|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from optimum.intel import OVModelForCausalLM |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
|
|
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino" |
|
print("Loading model...") |
|
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto") |
|
print("Loading tokenizer...") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True,) |
|
|
|
|
|
|
|
def respond(prompt, history): |
|
|
|
messages = [ |
|
{"role": "system", "content": "使用中文,直接回答用戶的問題,盡量簡潔在1024 token內。"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
print("Chat template text:", text) |
|
|
|
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
print("Model inputs:", model_inputs) |
|
|
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=2048, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True |
|
) |
|
print("Generated IDs:", generated_ids) |
|
|
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print("Decoded response:", response) |
|
|
|
response = response.replace("<think>", "**THINK**").replace("</think>", "**THINK**").strip() |
|
|
|
return response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
title="DeepSeek-R1-Distill-Qwen-1.5B-openvino", |
|
description="DeepSeek-R1-Distill-Qwen-1.5B-openvino" |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("Launching Gradio app...") |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |
|
|
|
|