Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
from optimum.intel import OVModelForCausalLM
|
4 |
-
from transformers import AutoTokenizer, pipeline
|
5 |
|
6 |
-
#
|
7 |
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
|
8 |
print("Loading model...")
|
9 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
10 |
print("Loading tokenizer...")
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True
|
12 |
-
|
13 |
-
def maxtest(prompt):
|
14 |
-
return prompt
|
15 |
-
|
16 |
|
17 |
def respond(prompt, history):
|
18 |
-
# 構建聊天模板
|
19 |
messages = [
|
20 |
{"role": "system", "content": "使用中文。"},
|
21 |
{"role": "user", "content": prompt}
|
22 |
-
]
|
23 |
text = tokenizer.apply_chat_template(
|
24 |
messages,
|
25 |
tokenize=False,
|
26 |
add_generation_prompt=True
|
27 |
)
|
28 |
-
print("Chat template text:", text)
|
29 |
-
|
30 |
-
# 將文本轉換為模型輸入
|
31 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
32 |
-
print("Model inputs:", model_inputs)
|
33 |
-
|
34 |
-
# 生成回應
|
35 |
generated_ids = model.generate(
|
36 |
**model_inputs,
|
37 |
max_new_tokens=4096,
|
38 |
-
temperature=0.7,
|
39 |
-
top_p=0.9,
|
40 |
-
do_sample=True
|
41 |
)
|
42 |
-
print("Generated IDs:", generated_ids)
|
43 |
-
|
44 |
-
# 解碼生成的 token IDs
|
45 |
generated_ids = [
|
46 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
47 |
]
|
48 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
49 |
-
print("Decoded response:", response)
|
50 |
-
# **去除 `<think>` 及其他無用內容**
|
51 |
response = response.replace("<think>", "**THINK**").replace("</think>", "**THINK**").strip()
|
52 |
-
# 返回回應
|
53 |
return response
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
print("Launching Gradio app...")
|
64 |
-
#
|
65 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
66 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
from optimum.intel import OVModelForCausalLM
|
|
|
4 |
|
5 |
+
# 模型與標記器載入(你的原始代碼)
|
6 |
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
|
7 |
print("Loading model...")
|
8 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
9 |
print("Loading tokenizer...")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def respond(prompt, history):
|
|
|
13 |
messages = [
|
14 |
{"role": "system", "content": "使用中文。"},
|
15 |
{"role": "user", "content": prompt}
|
16 |
+
]
|
17 |
text = tokenizer.apply_chat_template(
|
18 |
messages,
|
19 |
tokenize=False,
|
20 |
add_generation_prompt=True
|
21 |
)
|
|
|
|
|
|
|
22 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
23 |
generated_ids = model.generate(
|
24 |
**model_inputs,
|
25 |
max_new_tokens=4096,
|
26 |
+
temperature=0.7,
|
27 |
+
top_p=0.9,
|
28 |
+
do_sample=True
|
29 |
)
|
|
|
|
|
|
|
30 |
generated_ids = [
|
31 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
32 |
]
|
33 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
|
34 |
response = response.replace("<think>", "**THINK**").replace("</think>", "**THINK**").strip()
|
|
|
35 |
return response
|
36 |
|
37 |
+
def maxtest(prompt):
|
38 |
+
return prompt
|
39 |
+
|
40 |
+
# 使用 Blocks 同時建立聊天接口和 API 接口
|
41 |
+
with gr.Blocks() as demo:
|
42 |
+
gr.Markdown("# DeepSeek-R1-Distill-Qwen-1.5B-openvino")
|
43 |
+
with gr.Tabs():
|
44 |
+
with gr.TabItem("聊天"):
|
45 |
+
chat = gr.ChatInterface(
|
46 |
+
fn=respond,
|
47 |
+
title="聊天介面",
|
48 |
+
description="DeepSeek-R1-Distill-Qwen-1.5B-openvino 聊天接口"
|
49 |
+
)
|
50 |
+
with gr.TabItem("MaxTest API"):
|
51 |
+
# 這個接口會被暴露為 /run/maxtest
|
52 |
+
api = gr.Interface(
|
53 |
+
fn=maxtest,
|
54 |
+
inputs=gr.Textbox(label="Prompt"),
|
55 |
+
outputs="text",
|
56 |
+
api_name="/maxtest",
|
57 |
+
title="MaxTest API",
|
58 |
+
description="回傳輸入內容的測試 API"
|
59 |
+
)
|
60 |
+
# 可以選擇將該接口放在單獨的 tab 內,也可以直接顯示
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
print("Launching Gradio app...")
|
64 |
+
# 啟動應用(如果你想使用 share=True 讓外網訪問也可加上該參數)
|
65 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|