Update app.py
Browse files
app.py
CHANGED
@@ -8,60 +8,45 @@ model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
|
|
8 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
messages = [
|
14 |
-
|
|
|
15 |
]
|
16 |
-
|
17 |
-
# 將歷史對話內容整合進 messages(注意這裡轉換成字典)
|
18 |
-
for msg in history:
|
19 |
-
# 假設 history 中每個元素原本是字典格式 (如果不是,請自行轉換)
|
20 |
-
messages.append({"role": "user", "content": msg["user"]})
|
21 |
-
messages.append({"role": "assistant", "content": msg["assistant"]})
|
22 |
-
|
23 |
-
# 加入當前用戶輸入
|
24 |
-
messages.append({"role": "user", "content": prompt})
|
25 |
-
|
26 |
-
# 構造模型輸入並生成回覆
|
27 |
text = tokenizer.apply_chat_template(
|
28 |
messages,
|
29 |
tokenize=False,
|
30 |
add_generation_prompt=True
|
31 |
)
|
32 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
33 |
generated_ids = model.generate(
|
34 |
**model_inputs,
|
35 |
max_new_tokens=512
|
36 |
-
)
|
|
|
|
|
|
|
|
|
37 |
generated_ids = [
|
38 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
39 |
]
|
40 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
41 |
-
|
|
|
42 |
print(f"Messages: {messages}")
|
43 |
print(f"Reply: {response}")
|
44 |
return response
|
45 |
-
|
46 |
-
# 更新並返回完整的聊天歷史(改為字典列表)
|
47 |
-
new_history = history.copy()
|
48 |
-
new_history.append({"user": prompt, "assistant": response})
|
49 |
-
# 最後返回的是一個消息列表,每一條消息為字典格式(可進一步轉換為 ChatMessage 格式)
|
50 |
-
final_messages = []
|
51 |
-
# 如果需要顯示完整對話,可將歷史中每一條對話分拆成兩條消息
|
52 |
-
for item in new_history:
|
53 |
-
final_messages.append({"role": "user", "content": item["user"]})
|
54 |
-
final_messages.append({"role": "assistant", "content": item["assistant"]})
|
55 |
-
return final_messages
|
56 |
-
'''''
|
57 |
-
|
58 |
# 設定 Gradio 的聊天界面
|
59 |
-
demo = gr.ChatInterface(
|
60 |
-
fn=respond,
|
61 |
-
title="DeepSeek-R1-Distill-Qwen-1.5B-openvino Chat",
|
62 |
-
description="Chat with DeepSeek-R1-Distill-Qwen-1.5B-openvino model.",
|
63 |
-
type="messages"
|
64 |
-
)
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
demo.launch()
|
|
|
|
8 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
|
11 |
+
# 建立生成管道
|
12 |
+
#pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
13 |
+
|
14 |
+
def respond(prompt , history):
|
15 |
+
# 將當前訊息與歷史訊息合併
|
16 |
+
#input_text = message if not history else history[-1]["content"] + " " + message
|
17 |
+
#input_text = message+",(450字內回覆)"
|
18 |
+
|
19 |
messages = [
|
20 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
21 |
+
{"role": "user", "content": prompt }
|
22 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
text = tokenizer.apply_chat_template(
|
24 |
messages,
|
25 |
tokenize=False,
|
26 |
add_generation_prompt=True
|
27 |
)
|
28 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
29 |
generated_ids = model.generate(
|
30 |
**model_inputs,
|
31 |
max_new_tokens=512
|
32 |
+
)
|
33 |
+
|
34 |
+
# 獲取模型的回應
|
35 |
+
#response = pipe(input_text, max_length=512, truncation=True, num_return_sequences=1)
|
36 |
+
#reply = response[0]['generated_text']
|
37 |
generated_ids = [
|
38 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
39 |
]
|
40 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
41 |
+
|
42 |
+
# 返回新的消息格式
|
43 |
print(f"Messages: {messages}")
|
44 |
print(f"Reply: {response}")
|
45 |
return response
|
46 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# 設定 Gradio 的聊天界面
|
48 |
+
demo = gr.ChatInterface(fn=respond, title="Qwen2.5-0.5B-Instruct-openvino-4bit", description="Qwen2.5-0.5B-Instruct-openvino-4bit", type='messages')
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
demo.launch()
|
52 |
+
|