import gradio as gr from transformers import AutoTokenizer from optimum.intel import OVModelForCausalLM import warnings warnings.filterwarnings("ignore", category=DeprecationWarning, message="__array__ implementation doesn't accept a copy keyword") # 模型與標記器載入(你的原始代碼) model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino" print("Loading model...") model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto") print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True) def respond(prompt, history): messages = [ {"role": "system", "content": "使用中文。"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=4096, temperature=0.7, top_p=0.9, do_sample=True ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] response = response.replace("", "**THINK**").replace("", "**THINK**").strip() return response with gr.Blocks() as demo: gr.Markdown("# DeepSeek-R1-Distill-Qwen-1.5B-openvino") with gr.Tabs(): with gr.TabItem("聊天"): chat_if = gr.Interface( fn=respond, inputs=gr.Textbox(label="Prompt", placeholder="請輸入訊息..."), outputs=gr.Textbox(label="Response", interactive=False), api_name="hchat", title="DeepSeek-R1-Distill-Qwen-1.5B-openvino", description="回傳輸入內容的測試 API", ) if __name__ == "__main__": print("Launching Gradio app...") #demo.queue(api_open=True, max_size=1) demo.launch(server_name="0.0.0.0", server_port=7860, share=True, api_open=True, max_size=1)