import gradio as gr from transformers import AutoTokenizer from optimum.intel import OVModelForCausalLM # 模型與標記器載入(你的原始代碼) model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino" print("Loading model...") model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto") print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True) def respond(prompt, history): messages = [ {"role": "system", "content": "使用中文。"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=4096, temperature=0.7, top_p=0.9, do_sample=True ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] response = response.replace("", "**THINK**").replace("", "**THINK**").strip() return response def maxtest(prompt): return prompt with gr.Blocks() as demo: gr.Markdown("# DeepSeek-R1-Distill-Qwen-1.5B-openvino") with gr.Tabs(): with gr.TabItem("聊天"): chat = gr.ChatInterface( fn=respond, title="聊天介面", description="DeepSeek-R1-Distill-Qwen-1.5B-openvino 聊天接口" ) # 將隱藏的接口作為一個組件加入 Blocks,設定 visible=False hidden_api = gr.Interface( fn=respond, inputs=gr.Textbox(label="Prompt"), outputs="text", api_name="/hchat", title="MaxTest API", description="回傳輸入內容的測試 API", visible=False ) # 使用 .render() 將 hidden_api 組件加入佈局,雖然 UI 不會顯示,但 API 端點仍會註冊 #hidden_api.render() if __name__ == "__main__": print("Launching Gradio app...") demo.launch(server_name="0.0.0.0", server_port=7860, share=True)