Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -15,50 +23,67 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import openvino_genai as ov_genai
|
3 |
+
import time
|
4 |
|
5 |
+
# 載入 OpenVINO 模型
|
6 |
+
model_path = "qwen3-0.6b-int8-ov" # 根據實際路徑修改
|
7 |
+
pipe = ov_genai.LLMPipeline(model_path, "CPU")
|
8 |
+
pipe.start_chat()
|
9 |
|
10 |
+
# 這個會在 token 產生時被呼叫
|
11 |
+
def build_streamer(callback):
|
12 |
+
def streamer(subword):
|
13 |
+
callback(subword)
|
14 |
+
return ov_genai.StreamingStatus.RUNNING
|
15 |
+
return streamer
|
16 |
|
17 |
+
# 對話處理函式
|
18 |
def respond(
|
19 |
message,
|
20 |
history: list[tuple[str, str]],
|
|
|
23 |
temperature,
|
24 |
top_p,
|
25 |
):
|
26 |
+
prompt = system_message + "\n"
|
27 |
+
for user_msg, bot_msg in history:
|
28 |
+
prompt += f"<|user|>\n{user_msg}\n<|assistant|>\n{bot_msg}\n"
|
29 |
+
prompt += f"<|user|>\n{message}\n<|assistant|>\n"
|
30 |
|
31 |
+
response = ""
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# 使用 generator 包裝 streamer
|
34 |
+
def generator():
|
35 |
+
nonlocal response
|
36 |
+
start_time = time.time()
|
37 |
|
38 |
+
def collect_output(subword):
|
39 |
+
nonlocal response
|
40 |
+
response += subword
|
41 |
+
yield_fn.send(subword) # 把 token 傳給外部 generator
|
42 |
|
43 |
+
yield_fn = yield # 讓第一個 yield 傳入收集函式
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# 執行生成
|
46 |
+
gen_result = pipe.generate(
|
47 |
+
[prompt],
|
48 |
+
streamer=build_streamer(collect_output),
|
49 |
+
max_new_tokens=max_tokens,
|
50 |
+
temperature=temperature,
|
51 |
+
top_p=top_p
|
52 |
+
)
|
53 |
+
|
54 |
+
elapsed = time.time() - start_time
|
55 |
+
tps = gen_result.perf_metrics.get_throughput().mean
|
56 |
+
print(f"\n--- TPS --- {tps:.2f} tokens/s --- {elapsed:.2f} sec")
|
57 |
+
yield_fn.close() # 關閉 generator
|
58 |
|
59 |
+
# 建立 streaming generator
|
60 |
+
def streaming_generator():
|
61 |
+
gen = generator()
|
62 |
+
try:
|
63 |
+
next(gen) # 啟動 generator
|
64 |
+
while True:
|
65 |
+
token = (yield)
|
66 |
+
gen.send(token)
|
67 |
+
yield token
|
68 |
+
except StopIteration:
|
69 |
+
return
|
70 |
|
71 |
+
# Streaming to Gradio
|
72 |
+
stream = streaming_generator()
|
73 |
+
next(stream) # 啟動 stream
|
74 |
+
for token in stream:
|
75 |
+
yield response
|
76 |
+
|
77 |
+
# 建立 Gradio Chat Interface
|
78 |
demo = gr.ChatInterface(
|
79 |
respond,
|
80 |
additional_inputs=[
|
81 |
+
gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
82 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
83 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
84 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
],
|
86 |
)
|
87 |
|
|
|
88 |
if __name__ == "__main__":
|
89 |
demo.launch()
|