hsuwill000 commited on
Commit
9424b30
·
verified ·
1 Parent(s): e812502

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -35
app.py CHANGED
@@ -1,12 +1,20 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
9
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -15,50 +23,67 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
 
 
 
 
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import openvino_genai as ov_genai
3
+ import time
4
 
5
+ # 載入 OpenVINO 模型
6
+ model_path = "qwen3-0.6b-int8-ov" # 根據實際路徑修改
7
+ pipe = ov_genai.LLMPipeline(model_path, "CPU")
8
+ pipe.start_chat()
9
 
10
+ # 這個會在 token 產生時被呼叫
11
+ def build_streamer(callback):
12
+ def streamer(subword):
13
+ callback(subword)
14
+ return ov_genai.StreamingStatus.RUNNING
15
+ return streamer
16
 
17
+ # 對話處理函式
18
  def respond(
19
  message,
20
  history: list[tuple[str, str]],
 
23
  temperature,
24
  top_p,
25
  ):
26
+ prompt = system_message + "\n"
27
+ for user_msg, bot_msg in history:
28
+ prompt += f"<|user|>\n{user_msg}\n<|assistant|>\n{bot_msg}\n"
29
+ prompt += f"<|user|>\n{message}\n<|assistant|>\n"
30
 
31
+ response = ""
 
 
 
 
32
 
33
+ # 使用 generator 包裝 streamer
34
+ def generator():
35
+ nonlocal response
36
+ start_time = time.time()
37
 
38
+ def collect_output(subword):
39
+ nonlocal response
40
+ response += subword
41
+ yield_fn.send(subword) # 把 token 傳給外部 generator
42
 
43
+ yield_fn = yield # 讓第一個 yield 傳入收集函式
 
 
 
 
 
 
 
44
 
45
+ # 執行生成
46
+ gen_result = pipe.generate(
47
+ [prompt],
48
+ streamer=build_streamer(collect_output),
49
+ max_new_tokens=max_tokens,
50
+ temperature=temperature,
51
+ top_p=top_p
52
+ )
53
+
54
+ elapsed = time.time() - start_time
55
+ tps = gen_result.perf_metrics.get_throughput().mean
56
+ print(f"\n--- TPS --- {tps:.2f} tokens/s --- {elapsed:.2f} sec")
57
+ yield_fn.close() # 關閉 generator
58
 
59
+ # 建立 streaming generator
60
+ def streaming_generator():
61
+ gen = generator()
62
+ try:
63
+ next(gen) # 啟動 generator
64
+ while True:
65
+ token = (yield)
66
+ gen.send(token)
67
+ yield token
68
+ except StopIteration:
69
+ return
70
 
71
+ # Streaming to Gradio
72
+ stream = streaming_generator()
73
+ next(stream) # 啟動 stream
74
+ for token in stream:
75
+ yield response
76
+
77
+ # 建立 Gradio Chat Interface
78
  demo = gr.ChatInterface(
79
  respond,
80
  additional_inputs=[
81
+ gr.Textbox(value="You are a helpful assistant.", label="System message"),
82
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
83
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
84
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
85
  ],
86
  )
87
 
 
88
  if __name__ == "__main__":
89
  demo.launch()