Spaces:
Running
Running
import huggingface_hub as hf_hub | |
import time | |
import openvino_genai as ov_genai | |
import numpy as np | |
import gradio as gr | |
import re | |
import threading | |
# 下載模型 | |
model_ids = [ | |
"OpenVINO/Qwen3-0.6B-int4-ov", | |
"OpenVINO/Qwen3-1.7B-int4-ov", | |
#"OpenVINO/Qwen3-4B-int4-ov", #不可用 | |
"OpenVINO/Qwen3-8B-int4-ov", | |
"OpenVINO/Qwen3-14B-int4-ov", | |
] | |
model_name_to_full_id = {model_id.split("/")[-1]: model_id for model_id in model_ids} # Create Dictionary | |
def download_model(model_id): | |
model_path = model_id.split("/")[-1] # Extract model name | |
try: | |
hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False) | |
print(f"Successfully downloaded {model_id} to {model_path}") | |
# 檢查模型檔案是否完整 (可以加入具體的檔案檢查) | |
# 例如,檢查必須存在的檔案是否存在,或驗證檔案大小 | |
return True | |
except Exception as e: | |
print(f"Error downloading {model_id}: {e}") | |
return False | |
# 下載所有模型 | |
for model_id in model_ids: | |
if not download_model(model_id): | |
print(f"Failed to download {model_id}, skipping.") | |
# 建立推理管線 (Initialize with a default model first) | |
device = "CPU" | |
default_model_name = "Qwen3-0.6B-int4-ov" # Choose a default model | |
# 全局变量,用于存储推理管线、分词器、Markdown 组件和累计文本 | |
pipe = None | |
tokenizer = None | |
accumulated_text = "" | |
# 初始化 Markdown 组件 | |
markdown_component = None # 在全局範圍初始化 | |
# 建立 Gradio 介面 | |
model_choices = list(model_name_to_full_id.keys()) | |
# 创建 streamer 函数 (保持原有架构) | |
def streamer(subword): | |
global accumulated_text | |
accumulated_text += subword | |
print(subword, end='', flush=True) # 保留打印到控制台 | |
return accumulated_text # 返回更新後的文字,Gradio會自動更新Markdown元件 | |
# 模型載入函數 | |
def load_model(model_name): | |
global pipe, tokenizer | |
model_path = model_name | |
print(f"Loading model: {model_name}") | |
try: | |
pipe = ov_genai.LLMPipeline(model_path, device) | |
tokenizer = pipe.get_tokenizer() | |
tokenizer.set_chat_template(tokenizer.chat_template) # 確保 chat template 已設定 | |
print(f"Model {model_name} loaded successfully.") | |
return True | |
except Exception as e: | |
print(f"Error loading model {model_name}: {e}") | |
return False | |
# 產生回應的函數 | |
def generate_response(prompt, model_name): | |
global pipe, tokenizer, accumulated_text | |
# 如果模型尚未載入,或需要切換模型,則載入模型 | |
if pipe is None or pipe.model_name != model_name: | |
if not load_model(model_name): | |
return "模型載入失敗", "模型載入失敗", "模型載入失敗" | |
accumulated_text = "" #重置累積文字 | |
try: | |
generated = pipe.generate(prompt, streamer=streamer, max_new_tokens=100) | |
tokenpersec = f'{generated.perf_metrics.get_throughput().mean:.2f}' | |
return tokenpersec, accumulated_text | |
except Exception as e: | |
error_message = f"生成回應時發生錯誤:{e}" | |
print(error_message) | |
return "發生錯誤", "發生錯誤", error_message | |
with gr.Blocks() as demo: | |
markdown_component = gr.Markdown(label="回应") # 在Blocks內部初始化 | |
with gr.Row(): | |
prompt_textbox = gr.Textbox(lines=5, label="輸入提示 (Prompt)") | |
model_dropdown = gr.Dropdown(choices=model_choices, value=default_model_name, label="選擇模型") | |
with gr.Row(): | |
token_per_sec_textbox = gr.Textbox(label="tokens/sec") | |
def process_input(prompt, model_name): | |
tokens_sec, response = generate_response(prompt, model_name) | |
return tokens_sec, response | |
prompt_textbox.submit( | |
fn=process_input, | |
inputs=[prompt_textbox, model_dropdown], | |
outputs=[token_per_sec_textbox, markdown_component] | |
) | |
demo.launch() |