qwen3_test / app.py
hsuwill000's picture
Update app.py
8b31668 verified
raw
history blame
1.74 kB
import huggingface_hub as hf_hub
import time
import openvino_genai as ov_genai
import numpy as np
import gradio as gr
import re
# 下載模型
model_id = "OpenVINO/Qwen3-0.6B-int4-ov"
model_path = "Qwen3-0.6B-int4-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False)
# 建立推理管線
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
tokenizer = pipe.get_tokenizer()
tokenizer.set_chat_template(tokenizer.chat_template)
def streamer(subword):
yield subword
return ov_genai.StreamingStatus.RUNNING
def generate_response(prompt):
try:
full_response = ""
token_count = 0
start_time = time.time()
for text in pipe.generate(prompt, streamer=streamer, max_new_tokens=1024):
full_response += text
token_count += 1
yield (None, full_response) # 每次 yield 都会刷新界面
end_time = time.time()
elapsed_time = end_time - start_time
tokens_per_sec = token_count / elapsed_time if elapsed_time > 0 else 0
tokenpersec=f'{tokens_per_sec:.2f}'
yield (tokenpersec, full_response) # 最终 yield, 保证输出完整.
except Exception as e:
yield ("發生錯誤", f"生成回應時發生錯誤:{e}") # 使用 yield 错误信息
# 建立 Gradio 介面
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=5, label="輸入提示 (Prompt)"),
outputs=[
gr.Textbox(label="tokens/sec"),
gr.Textbox(label="回應", streaming=True)
],
title="Qwen3-0.6B-int4-ov ",
description="基於 Qwen3-0.6B-int4-ov 推理應用,支援思考過程分離與 GUI。"
)
if __name__ == "__main__":
demo.launch()