qwen3_test / app.py
hsuwill000's picture
Update app.py
a529429 verified
raw
history blame
3.04 kB
import huggingface_hub as hf_hub
import time
import openvino_genai as ov_genai
import numpy as np
import gradio as gr
import re
import threading
# 下載模型
model_ids = [
"OpenVINO/Qwen3-0.6B-int4-ov",
"OpenVINO/Qwen3-1.7B-int4-ov",
#"OpenVINO/Qwen3-4B-int4-ov",#不可用
"OpenVINO/Qwen3-8B-int4-ov",
"OpenVINO/Qwen3-14B-int4-ov",
]
model_name_to_full_id = {model_id.split("/")[-1]: model_id for model_id in model_ids} #Create Dictionary
for model_id in model_ids:
model_path = model_id.split("/")[-1] # Extract model name
try:
hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False)
print(f"Successfully downloaded {model_id} to {model_path}") # Optional: Print confirmation
except Exception as e:
print(f"Error downloading {model_id}: {e}") # Handle download errors gracefully
# 建立推理管線 (Initialize with a default model first)
device = "CPU"
default_model_name = "Qwen3-0.6B-int4-ov" # Choose a default model
# 全局变量,用于存储推理管线、分词器、Markdown 组件和累计文本
pipe = None
tokenizer = None
markdown_component = None # 初始化
accumulated_text = ""
# 定义同步更新 Markdown 组件的函数
def update_markdown(text):
global markdown_component
if markdown_component:
markdown_component.update(value=text)
# 创建 streamer 函数 (保持原有架构)
def streamer(subword):
global accumulated_text
accumulated_text += subword
print(subword, end='', flush=True) # 保留打印到控制台
# 使用线程来异步更新 Markdown 组件
threading.Thread(target=update_markdown, args=(accumulated_text,)).start() # 异步更新 UI
return ov_genai.StreamingStatus.RUNNING
def generate_response(prompt, model_name):
global pipe, tokenizer # Access the global variables
model_path = model_name
print(f"Switching to model: {model_name}")
pipe = ov_genai.LLMPipeline(model_path, device)
tokenizer = pipe.get_tokenizer()
tokenizer.set_chat_template(tokenizer.chat_template)
try:
#generated = pipe.generate([prompt], max_length=1024)
generated = pipe.generate(prompt, streamer=streamer, max_new_tokens=100)
tokenpersec=f'{generated.perf_metrics.get_throughput().mean:.2f}'
return tokenpersec, generated
except Exception as e:
return "發生錯誤", "發生錯誤", f"生成回應時發生錯誤:{e}"
# 建立 Gradio 介面
model_choices = list(model_name_to_full_id.keys())
demo = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(lines=5, label="輸入提示 (Prompt)"),
gr.Dropdown(choices=model_choices, value=default_model_name, label="選擇模型") # Added dropdown
],
outputs=[
gr.Textbox(label="tokens/sec"),
gr.Textbox(label="回應"),
],
title="Qwen3 Model Inference",
description="基於 Qwen3 推理應用,支援思考過程分離與 GUI。"
)
if __name__ == "__main__":
demo.launch()