Spaces:
Running
Running
import huggingface_hub as hf_hub | |
import time | |
import openvino_genai as ov_genai | |
import numpy as np | |
import gradio as gr | |
import re | |
# 下載模型 | |
model_id = "OpenVINO/Qwen3-0.6B-int4-ov" | |
model_path = "Qwen3-0.6B-int4-ov" | |
hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False) | |
# 建立推理管線 | |
device = "CPU" | |
pipe = ov_genai.LLMPipeline(model_path, device) | |
tokenizer = pipe.get_tokenizer() | |
tokenizer.set_chat_template(tokenizer.chat_template) | |
def generate_response(prompt): | |
full_response = "" # 用於儲存完整的回應 | |
def streamer(subword): | |
nonlocal full_response | |
full_response += subword | |
yield full_response # 使用 yield 使 streamer 成為生成器 | |
return ov_genai.StreamingStatus.RUNNING # 返回 StreamingStatus.RUNNING | |
try: | |
# 使用流式生成 | |
generated = pipe.generate(prompt, streamer=streamer, max_new_tokens=100) | |
tokenpersec = f'{generated.perf_metrics.get_throughput().mean:.2f}' # 恢復原本計算 tokenpersec 的方式 | |
return tokenpersec, full_response | |
except Exception as e: | |
return "發生錯誤", "發生錯誤", f"生成回應時發生錯誤:{e}" | |
# 建立 Gradio 介面 | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=5, label="輸入提示 (Prompt)"), | |
outputs=[ | |
gr.Textbox(label="tokens/sec"), | |
gr.Textbox(label="回應"] | |
], | |
title="Qwen3-0.6B-int4-ov ", | |
description="基於 Qwen3-0.6B-int4-ov 推理應用,支援思考過程分離與 GUI。" | |
) | |
if __name__ == "__main__": | |
demo.launch() |