Spaces:
Running
Running
import huggingface_hub as hf_hub | |
import openvino_genai as ov_genai | |
import gradio as gr | |
# 下載模型 | |
model_id = "OpenVINO/Qwen3-0.6B-int4-ov" | |
model_path = "Qwen3-0.6B-int4-ov" | |
hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False) | |
# 建立推理管線 | |
device = "CPU" | |
pipe = ov_genai.LLMPipeline(model_path, device) | |
tokenizer = pipe.get_tokenizer() | |
tokenizer.set_chat_template(tokenizer.chat_template) | |
# 完整流式處理的 generate_response 函數 | |
def generate_response(prompt): | |
response = "" | |
try: | |
# 定義流式處理的回調函數 | |
def streamer(subword): | |
nonlocal response | |
response += subword # 拼接實時輸出的內容 | |
yield response # 每次生成一部分內容即時返回給 Gradio | |
return ov_genai.StreamingStatus.RUNNING | |
# 啟動流式生成 | |
pipe.start_chat() | |
generated = pipe.generate([prompt], streamer=streamer, max_length=1024) | |
pipe.finish_chat() | |
# 最後返回完整輸出與性能數據 | |
token_per_sec = f'{generated.perf_metrics.get_throughput().mean:.2f}' | |
yield f"生成完成:每秒生成 {token_per_sec} tokens。\n\n最終回應:{response}" | |
except Exception as e: | |
# 捕獲錯誤並即時返回錯誤訊息 | |
yield f"生成過程中發生錯誤:{e}" | |
# 使用 Gradio 流式介面 | |
demo = gr.Interface( | |
fn=generate_response, # 流式處理函數 | |
inputs=gr.Textbox(lines=5, label="輸入提示 (Prompt)"), | |
outputs=[ | |
gr.Textbox(label="流式處理的回應") # 輸出將逐步更新,顯示即時生成內容 | |
], | |
title="Qwen3-0.6B-int4-ov 流式處理", | |
description="基於 Qwen3-0.6B-int4-ov 推理應用,支援實時輸出到 Gradio 介面。" | |
) | |
# 啟動 Gradio 服務 | |
if __name__ == "__main__": | |
demo.queue().launch() |