hsuwill000 commited on
Commit
6e96eae
·
verified ·
1 Parent(s): 23834ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -60
app.py CHANGED
@@ -1,64 +1,76 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
61
 
62
 
63
- if __name__ == "__main__":
64
  demo.launch()
 
 
 
 
 
1
+ import huggingface_hub as hf_hub
2
+ import time
3
+ import openvino_genai as ov_genai
4
+ import numpy as np
5
  import gradio as gr
6
+
7
+ # 下載模型
8
+ model_id = "OpenVINO/Qwen3-0.6B-int4-ov"
9
+ model_path = "Qwen3-0.6B-int4-ov"
10
+
11
+ hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False) # Added local_dir_use_symlinks=False to avoid potential issues
12
+
13
+ # 建立推理管線
14
+ device = "CPU"
15
+ pipe = ov_genai.LLMPipeline(model_path, device)
16
+ tokenizer = pipe.get_tokenizer()
17
+ tokenizer.set_chat_template(tokenizer.chat_template)
18
+
19
+
20
+ def generate_response(prompt):
21
+ """
22
+ Generates a response using the OpenVINO LLM pipeline.
23
+
24
+ Args:
25
+ prompt (str): The input prompt.
26
+
27
+ Returns:
28
+ str: The generated response.
29
+ """
30
+ start_time = time.time()
31
+ output = pipe.generate([prompt], max_length=1024)
32
+ end_time = time.time()
33
+
34
+ generated_text = output.text[0] # Extract the generated text
35
+
36
+ performance_metrics = f"Generate duration: {output.perf_metrics.get_generate_duration().mean:.2f}ms\n"
37
+ performance_metrics += f'Throughput: {output.perf_metrics.get_throughput().mean:.2f} tokens/s'
38
+
39
+ return generated_text, performance_metrics
40
+
41
+
42
+ def main():
43
+ """
44
+ Creates and launches the Gradio interface.
45
+ """
46
+
47
+ with gr.Blocks() as demo:
48
+ gr.Markdown("# OpenVINO Qwen3-8B Demo") # Add a title
49
+ prompt_input = gr.Textbox(lines=3, label="Enter your prompt:")
50
+ output_text = gr.Textbox(label="Generated Response")
51
+ performance_text = gr.Textbox(label="Performance Metrics", visible=False) # Initially hidden
52
+
53
+ def update_output(prompt):
54
+ response, performance = generate_response(prompt)
55
+ return response, performance # return both values
56
+
57
+ prompt_input.change(
58
+ fn=update_output,
59
+ inputs=prompt_input,
60
+ outputs=[output_text, performance_text], # Output both response and metrics
61
+ )
62
+
63
+ # Button to show/hide performance metrics
64
+ show_metrics_button = gr.Button("Show/Hide Performance Metrics")
65
+ show_metrics_button.click(
66
+ fn=lambda visible: not visible,
67
+ inputs=[performance_text.visible],
68
+ outputs=[performance_text.visible],
69
+ )
70
 
71
 
 
72
  demo.launch()
73
+
74
+
75
+ if __name__ == "__main__":
76
+ main()