import huggingface_hub as hf_hub import time import openvino_genai as ov_genai import numpy as np import gradio as gr import re # 下載模型 model_id = "OpenVINO/Qwen3-0.6B-int4-ov" model_path = "Qwen3-0.6B-int4-ov" hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False) # 建立推理管線 device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) tokenizer = pipe.get_tokenizer() tokenizer.set_chat_template(tokenizer.chat_template) def generate_response(prompt): full_response = "" # 用於儲存完整的回應 def streamer(subword): nonlocal full_response full_response += subword yield full_response # 使用 yield 使 streamer 成為生成器 return ov_genai.StreamingStatus.RUNNING # 返回 StreamingStatus.RUNNING try: # 使用流式生成 generated = pipe.generate(prompt, streamer=streamer, max_new_tokens=100) tokenpersec = f'{generated.perf_metrics.get_throughput().mean:.2f}' # 恢復原本計算 tokenpersec 的方式 return tokenpersec, full_response except Exception as e: return "發生錯誤", "發生錯誤", f"生成回應時發生錯誤:{e}" # 建立 Gradio 介面 demo = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=5, label="輸入提示 (Prompt)"), outputs=[ gr.Textbox(label="tokens/sec"), gr.Textbox(label="回應"), ], title="Qwen3-0.6B-int4-ov ", description="基於 Qwen3-0.6B-int4-ov 推理應用,支援思考過程分離與 GUI。" ) if __name__ == "__main__": demo.launch()