import huggingface_hub as hf_hub import time import openvino_genai as ov_genai import numpy as np import gradio as gr import re import gc # 下載模型 model_ids = [ "OpenVINO/Qwen3-0.6B-int4-ov", "OpenVINO/Qwen3-1.7B-int4-ov", #"OpenVINO/Qwen3-4B-int4-ov",#不可用 "OpenVINO/Qwen3-8B-int4-ov", "OpenVINO/Qwen3-14B-int4-ov", ] model_name_to_full_id = {model_id.split("/")[-1]: model_id for model_id in model_ids} #Create Dictionary for model_id in model_ids: model_path = model_id.split("/")[-1] # Extract model name try: hf_hub.snapshot_download(model_id, local_dir=model_path, local_dir_use_symlinks=False) print(f"Successfully downloaded {model_id} to {model_path}") # Optional: Print confirmation except Exception as e: print(f"Error downloading {model_id}: {e}") # Handle download errors gracefully # 建立推理管線 (Initialize with a default model first) device = "CPU" InUsed_model_name = "Qwen3-0.6B-int4-ov" # Choose a default model pipe = ov_genai.LLMPipeline(InUsed_model_name, device) tokenizer = pipe.get_tokenizer() tokenizer.set_chat_template(tokenizer.chat_template) config = ov_genai.GenerationConfig() config.max_new_tokens = 1024 def streamer(subword): print(subword, end='', flush=True) return False def generate_response(prompt, model_name): global pipe, tokenizer, InUsed_model_name if(InUsed_model_name!=model_name): model_path = model_name del pipe gc.collect() print(f"Switching to model: {model_name}") pipe = ov_genai.LLMPipeline(model_path, device) tokenizer = pipe.get_tokenizer() tokenizer.set_chat_template(tokenizer.chat_template) InUsed_model_name=model_name try: generated = pipe.generate([prompt], config, streamer) tokenpersec=f'{generated.perf_metrics.get_throughput().mean:.2f}' print(f"\nModel:{model_name} TPS:{tokenpersec}\n") return tokenpersec, generated except Exception as e: return "發生錯誤", "發生錯誤", f"生成回應時發生錯誤:{e}" # 建立 Gradio 介面 model_choices = list(model_name_to_full_id.keys()) demo = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(lines=5, label="輸入提示 (Prompt)"), gr.Dropdown(choices=model_choices, value=InUsed_model_name, label="選擇模型") # Added dropdown ], outputs=[ gr.Textbox(label="tokens/sec"), gr.Textbox(label="回應"), ], title="Qwen3 Model Inference", description="基於 Qwen3 推理應用,支援思考過程分離與 GUI。" ) if __name__ == "__main__": demo.launch()