Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,7 @@ from PIL import Image
|
|
| 11 |
|
| 12 |
translator = Translator()
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
-
basemodel = "
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
|
| 17 |
CSS = """
|
|
@@ -27,12 +27,11 @@ JS = """function () {
|
|
| 27 |
}
|
| 28 |
}"""
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
)
|
| 36 |
|
| 37 |
async def generate_image(
|
| 38 |
prompt:str,
|
|
@@ -42,7 +41,8 @@ async def generate_image(
|
|
| 42 |
height:int=1024,
|
| 43 |
scales:float=3.5,
|
| 44 |
steps:int=24,
|
| 45 |
-
seed:int=-1
|
|
|
|
| 46 |
|
| 47 |
if seed == -1:
|
| 48 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -66,6 +66,42 @@ async def generate_image(
|
|
| 66 |
|
| 67 |
return image, seed
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
async def gen(
|
| 70 |
prompt:str,
|
| 71 |
lora_add:str="",
|
|
@@ -75,20 +111,31 @@ async def gen(
|
|
| 75 |
scales:float=3.5,
|
| 76 |
steps:int=24,
|
| 77 |
seed:int=-1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
progress=gr.Progress(track_tqdm=True)
|
| 79 |
):
|
| 80 |
model = enable_lora(lora_add)
|
| 81 |
print(model)
|
| 82 |
-
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
| 83 |
-
|
| 84 |
-
|
|
|
|
| 85 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
| 86 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
| 87 |
gr.HTML("<p><center>Powered By HF Inference API</center></p>")
|
| 88 |
with gr.Row():
|
| 89 |
with gr.Column(scale=4):
|
| 90 |
with gr.Row():
|
| 91 |
-
img = gr.Image(type="filepath", label='
|
|
|
|
| 92 |
with gr.Row():
|
| 93 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
| 94 |
sendBtn = gr.Button(scale=1, variant='primary')
|
|
@@ -133,7 +180,7 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 133 |
label="Add Flux LoRA",
|
| 134 |
info="Copy the HF LoRA model name here",
|
| 135 |
lines=1,
|
| 136 |
-
|
| 137 |
)
|
| 138 |
lora_word = gr.Textbox(
|
| 139 |
label="Add Flux LoRA Trigger Word",
|
|
@@ -141,6 +188,71 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 141 |
lines=1,
|
| 142 |
value="",
|
| 143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
gr.on(
|
| 146 |
triggers=[
|
|
@@ -156,9 +268,18 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 156 |
height,
|
| 157 |
scales,
|
| 158 |
steps,
|
| 159 |
-
seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
],
|
| 161 |
-
outputs=[img, seed]
|
| 162 |
)
|
| 163 |
|
| 164 |
if __name__ == "__main__":
|
|
|
|
| 11 |
|
| 12 |
translator = Translator()
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
+
basemodel = "XLabs-AI/flux-RealismLora"
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
|
| 17 |
CSS = """
|
|
|
|
| 27 |
}
|
| 28 |
}"""
|
| 29 |
|
| 30 |
+
def enable_lora(lora_add):
|
| 31 |
+
if not lora_add:
|
| 32 |
+
return basemodel
|
| 33 |
+
else:
|
| 34 |
+
return lora_add
|
|
|
|
| 35 |
|
| 36 |
async def generate_image(
|
| 37 |
prompt:str,
|
|
|
|
| 41 |
height:int=1024,
|
| 42 |
scales:float=3.5,
|
| 43 |
steps:int=24,
|
| 44 |
+
seed:int=-1
|
| 45 |
+
):
|
| 46 |
|
| 47 |
if seed == -1:
|
| 48 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 66 |
|
| 67 |
return image, seed
|
| 68 |
|
| 69 |
+
async def upscale_image(
|
| 70 |
+
prompt:str,
|
| 71 |
+
img_path:str,
|
| 72 |
+
upscale_factor:int=2,
|
| 73 |
+
controlnet_scale:float=0.6,
|
| 74 |
+
controlnet_decay:float=1,
|
| 75 |
+
condition_scale:int=6,
|
| 76 |
+
tile_width:int=112,
|
| 77 |
+
tile_height:int=144,
|
| 78 |
+
denoise_strength:float=0.35,
|
| 79 |
+
num_inference_steps:int=18,
|
| 80 |
+
solver:str="DDIM"
|
| 81 |
+
):
|
| 82 |
+
client = AsyncInferenceClient()
|
| 83 |
+
try:
|
| 84 |
+
result = await client.image_to_image(
|
| 85 |
+
prompt=prompt,
|
| 86 |
+
input_image=img_path,
|
| 87 |
+
negative_prompt="",
|
| 88 |
+
seed=42,
|
| 89 |
+
upscale_factor=upscale_factor,
|
| 90 |
+
controlnet_scale=controlnet_scale,
|
| 91 |
+
controlnet_decay=controlnet_decay,
|
| 92 |
+
condition_scale=condition_scale,
|
| 93 |
+
tile_width=tile_width,
|
| 94 |
+
tile_height=tile_height,
|
| 95 |
+
denoise_strength=denoise_strength,
|
| 96 |
+
num_inference_steps=num_inference_steps,
|
| 97 |
+
solver=solver,
|
| 98 |
+
model="finegrain/finegrain-image-enhancer",
|
| 99 |
+
)
|
| 100 |
+
except Exception as e:
|
| 101 |
+
raise gr.Error(f"Error in {e}")
|
| 102 |
+
|
| 103 |
+
return result[0]
|
| 104 |
+
|
| 105 |
async def gen(
|
| 106 |
prompt:str,
|
| 107 |
lora_add:str="",
|
|
|
|
| 111 |
scales:float=3.5,
|
| 112 |
steps:int=24,
|
| 113 |
seed:int=-1,
|
| 114 |
+
upscale_factor:int=2,
|
| 115 |
+
controlnet_scale:float=0.6,
|
| 116 |
+
controlnet_decay:float=1,
|
| 117 |
+
condition_scale:int=6,
|
| 118 |
+
tile_width:int=112,
|
| 119 |
+
tile_height:int=144,
|
| 120 |
+
denoise_strength:float=0.35,
|
| 121 |
+
num_inference_steps:int=18,
|
| 122 |
+
solver:str="DDIM",
|
| 123 |
progress=gr.Progress(track_tqdm=True)
|
| 124 |
):
|
| 125 |
model = enable_lora(lora_add)
|
| 126 |
print(model)
|
| 127 |
+
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
| 128 |
+
upscale_img = await upscale_image(prompt, image, upscale_factor, controlnet_scale, controlnet_decay, condition_scale, tile_width, tile_height, denoise_strength, num_inference_steps, solver)
|
| 129 |
+
return image, upscale_img, seed
|
| 130 |
+
|
| 131 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
| 132 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
| 133 |
gr.HTML("<p><center>Powered By HF Inference API</center></p>")
|
| 134 |
with gr.Row():
|
| 135 |
with gr.Column(scale=4):
|
| 136 |
with gr.Row():
|
| 137 |
+
img = gr.Image(type="filepath", label='Flux Image', height=600)
|
| 138 |
+
upscale_img = gr.Image(type="filepath", label='Upscale Image', height=600)
|
| 139 |
with gr.Row():
|
| 140 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
| 141 |
sendBtn = gr.Button(scale=1, variant='primary')
|
|
|
|
| 180 |
label="Add Flux LoRA",
|
| 181 |
info="Copy the HF LoRA model name here",
|
| 182 |
lines=1,
|
| 183 |
+
value="XLabs-AI/flux-RealismLora"
|
| 184 |
)
|
| 185 |
lora_word = gr.Textbox(
|
| 186 |
label="Add Flux LoRA Trigger Word",
|
|
|
|
| 188 |
lines=1,
|
| 189 |
value="",
|
| 190 |
)
|
| 191 |
+
upscale_factor = gr.Radio(
|
| 192 |
+
label="UpScale Factor",
|
| 193 |
+
choices=[
|
| 194 |
+
2, 3, 4
|
| 195 |
+
],
|
| 196 |
+
value=2,
|
| 197 |
+
scale=2
|
| 198 |
+
)
|
| 199 |
+
controlnet_scale = gr.Slider(
|
| 200 |
+
label="ControlNet Scale",
|
| 201 |
+
minimum=0.1,
|
| 202 |
+
maximum=1.0,
|
| 203 |
+
step=0.1,
|
| 204 |
+
value=0.6
|
| 205 |
+
)
|
| 206 |
+
controlnet_decay = gr.Slider(
|
| 207 |
+
label="ControlNet Decay",
|
| 208 |
+
minimum=0.1,
|
| 209 |
+
maximum=1.0,
|
| 210 |
+
step=0.1,
|
| 211 |
+
value=1
|
| 212 |
+
)
|
| 213 |
+
condition_scale = gr.Slider(
|
| 214 |
+
label="Condition Scale",
|
| 215 |
+
minimum=1,
|
| 216 |
+
maximum=10,
|
| 217 |
+
step=1,
|
| 218 |
+
value=6
|
| 219 |
+
)
|
| 220 |
+
tile_width = gr.Slider(
|
| 221 |
+
label="Tile Width",
|
| 222 |
+
minimum=64,
|
| 223 |
+
maximum=256,
|
| 224 |
+
step=16,
|
| 225 |
+
value=112
|
| 226 |
+
)
|
| 227 |
+
tile_height = gr.Slider(
|
| 228 |
+
label="Tile Height",
|
| 229 |
+
minimum=64,
|
| 230 |
+
maximum=256,
|
| 231 |
+
step=16,
|
| 232 |
+
value=144
|
| 233 |
+
)
|
| 234 |
+
denoise_strength = gr.Slider(
|
| 235 |
+
label="Denoise Strength",
|
| 236 |
+
minimum=0.1,
|
| 237 |
+
maximum=1.0,
|
| 238 |
+
step=0.1,
|
| 239 |
+
value=0.35
|
| 240 |
+
)
|
| 241 |
+
num_inference_steps = gr.Slider(
|
| 242 |
+
label="Num Inference Steps",
|
| 243 |
+
minimum=1,
|
| 244 |
+
maximum=50,
|
| 245 |
+
step=1,
|
| 246 |
+
value=18
|
| 247 |
+
)
|
| 248 |
+
solver = gr.Radio(
|
| 249 |
+
label="Solver",
|
| 250 |
+
choices=[
|
| 251 |
+
"DDIM", "DPM"
|
| 252 |
+
],
|
| 253 |
+
value="DDIM",
|
| 254 |
+
scale=2
|
| 255 |
+
)
|
| 256 |
|
| 257 |
gr.on(
|
| 258 |
triggers=[
|
|
|
|
| 268 |
height,
|
| 269 |
scales,
|
| 270 |
steps,
|
| 271 |
+
seed,
|
| 272 |
+
upscale_factor,
|
| 273 |
+
controlnet_scale,
|
| 274 |
+
controlnet_decay,
|
| 275 |
+
condition_scale,
|
| 276 |
+
tile_width,
|
| 277 |
+
tile_height,
|
| 278 |
+
denoise_strength,
|
| 279 |
+
num_inference_steps,
|
| 280 |
+
solver
|
| 281 |
],
|
| 282 |
+
outputs=[img, upscale_img, seed]
|
| 283 |
)
|
| 284 |
|
| 285 |
if __name__ == "__main__":
|