Upload 10 files
Browse files- .gitattributes +3 -0
- Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar +3 -0
- ZOUIF2W4_upper.obj +3 -0
- file.obj +3 -0
- illu.png +3 -0
- pages/01_🦷 Segment.py +898 -0
- pages/02_📙How_it_Works.py +50 -0
- requirements.txt +11 -0
- utils/style.css +10 -0
- utils/teeth-295404_1280.png +0 -0
- ⓘ_Introduction.py +40 -0
.gitattributes
CHANGED
|
@@ -36,3 +36,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 36 |
apps/demo/file.obj filter=lfs diff=lfs merge=lfs -text
|
| 37 |
apps/demo/illu.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
apps/demo/ZOUIF2W4_upper.obj filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
apps/demo/file.obj filter=lfs diff=lfs merge=lfs -text
|
| 37 |
apps/demo/illu.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
apps/demo/ZOUIF2W4_upper.obj filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
file.obj filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
illu.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
ZOUIF2W4_upper.obj filter=lfs diff=lfs merge=lfs -text
|
Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d2e44db8865ff3968803e86dadcf73cf9c4b738ddc35bfb3bc42c02347d7a0c
|
| 3 |
+
size 28825987
|
ZOUIF2W4_upper.obj
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:581b9a026e2ce734f6335f34aa900e8114dc33e2a83541ebd6bb26536382545e
|
| 3 |
+
size 18769177
|
file.obj
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:581b9a026e2ce734f6335f34aa900e8114dc33e2a83541ebd6bb26536382545e
|
| 3 |
+
size 18769177
|
illu.png
ADDED
|
Git LFS Details
|
pages/01_🦷 Segment.py
ADDED
|
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from streamlit import session_state as session
|
| 2 |
+
import shutil
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
from sklearn import neighbors
|
| 7 |
+
from scipy.spatial import distance_matrix
|
| 8 |
+
from pygco import cut_from_graph
|
| 9 |
+
import open3d as o3d
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import matplotlib.colors as mcolors
|
| 12 |
+
import json
|
| 13 |
+
from stpyvista import stpyvista
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from torch.autograd import Variable
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
import streamlit as st
|
| 19 |
+
import pyvista as pv
|
| 20 |
+
|
| 21 |
+
from PIL import Image
|
| 22 |
+
|
| 23 |
+
class TeethApp:
|
| 24 |
+
def __init__(self):
|
| 25 |
+
# Font
|
| 26 |
+
with open("utils/style.css") as css:
|
| 27 |
+
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
|
| 28 |
+
|
| 29 |
+
# Logo
|
| 30 |
+
self.image_path = "utils/teeth-295404_1280.png"
|
| 31 |
+
self.image = Image.open(self.image_path)
|
| 32 |
+
width, height = self.image.size
|
| 33 |
+
scale = 12
|
| 34 |
+
new_width, new_height = width / scale, height / scale
|
| 35 |
+
self.image = self.image.resize((int(new_width), int(new_height)))
|
| 36 |
+
|
| 37 |
+
# Streamlit side navigation bar
|
| 38 |
+
st.sidebar.markdown("# AI ToothSeg")
|
| 39 |
+
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
|
| 40 |
+
st.sidebar.markdown(" ")
|
| 41 |
+
st.sidebar.image(self.image, use_column_width=False)
|
| 42 |
+
st.markdown(
|
| 43 |
+
"""
|
| 44 |
+
<style>
|
| 45 |
+
.css-1bxukto {
|
| 46 |
+
background-color: rgb(255, 255, 255) ;""",
|
| 47 |
+
unsafe_allow_html=True,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class STN3d(nn.Module):
|
| 52 |
+
def __init__(self, channel):
|
| 53 |
+
super(STN3d, self).__init__()
|
| 54 |
+
self.conv1 = torch.nn.Conv1d(channel, 64, 1)
|
| 55 |
+
self.conv2 = torch.nn.Conv1d(64, 128, 1)
|
| 56 |
+
self.conv3 = torch.nn.Conv1d(128, 1024, 1)
|
| 57 |
+
self.fc1 = nn.Linear(1024, 512)
|
| 58 |
+
self.fc2 = nn.Linear(512, 256)
|
| 59 |
+
self.fc3 = nn.Linear(256, 9)
|
| 60 |
+
self.relu = nn.ReLU()
|
| 61 |
+
|
| 62 |
+
self.bn1 = nn.BatchNorm1d(64)
|
| 63 |
+
self.bn2 = nn.BatchNorm1d(128)
|
| 64 |
+
self.bn3 = nn.BatchNorm1d(1024)
|
| 65 |
+
self.bn4 = nn.BatchNorm1d(512)
|
| 66 |
+
self.bn5 = nn.BatchNorm1d(256)
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
batchsize = x.size()[0]
|
| 70 |
+
x = F.relu(self.bn1(self.conv1(x)))
|
| 71 |
+
x = F.relu(self.bn2(self.conv2(x)))
|
| 72 |
+
x = F.relu(self.bn3(self.conv3(x)))
|
| 73 |
+
x = torch.max(x, 2, keepdim=True)[0]
|
| 74 |
+
x = x.view(-1, 1024)
|
| 75 |
+
|
| 76 |
+
x = F.relu(self.bn4(self.fc1(x)))
|
| 77 |
+
x = F.relu(self.bn5(self.fc2(x)))
|
| 78 |
+
x = self.fc3(x)
|
| 79 |
+
|
| 80 |
+
iden = Variable(torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32))).view(1, 9).repeat(
|
| 81 |
+
batchsize, 1)
|
| 82 |
+
if x.is_cuda:
|
| 83 |
+
iden = iden.to(x.get_device())
|
| 84 |
+
x = x + iden
|
| 85 |
+
x = x.view(-1, 3, 3)
|
| 86 |
+
return x
|
| 87 |
+
|
| 88 |
+
class STNkd(nn.Module):
|
| 89 |
+
def __init__(self, k=64):
|
| 90 |
+
super(STNkd, self).__init__()
|
| 91 |
+
self.conv1 = torch.nn.Conv1d(k, 64, 1)
|
| 92 |
+
self.conv2 = torch.nn.Conv1d(64, 128, 1)
|
| 93 |
+
self.conv3 = torch.nn.Conv1d(128, 512, 1)
|
| 94 |
+
self.fc1 = nn.Linear(512, 256)
|
| 95 |
+
self.fc2 = nn.Linear(256, 128)
|
| 96 |
+
self.fc3 = nn.Linear(128, k * k)
|
| 97 |
+
self.relu = nn.ReLU()
|
| 98 |
+
|
| 99 |
+
self.bn1 = nn.BatchNorm1d(64)
|
| 100 |
+
self.bn2 = nn.BatchNorm1d(128)
|
| 101 |
+
self.bn3 = nn.BatchNorm1d(512)
|
| 102 |
+
self.bn4 = nn.BatchNorm1d(256)
|
| 103 |
+
self.bn5 = nn.BatchNorm1d(128)
|
| 104 |
+
|
| 105 |
+
self.k = k
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
batchsize = x.size()[0]
|
| 109 |
+
x = F.relu(self.bn1(self.conv1(x)))
|
| 110 |
+
x = F.relu(self.bn2(self.conv2(x)))
|
| 111 |
+
x = F.relu(self.bn3(self.conv3(x)))
|
| 112 |
+
x = torch.max(x, 2, keepdim=True)[0]
|
| 113 |
+
x = x.view(-1, 512)
|
| 114 |
+
|
| 115 |
+
x = F.relu(self.bn4(self.fc1(x)))
|
| 116 |
+
x = F.relu(self.bn5(self.fc2(x)))
|
| 117 |
+
x = self.fc3(x)
|
| 118 |
+
|
| 119 |
+
iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1, self.k * self.k).repeat(
|
| 120 |
+
batchsize, 1)
|
| 121 |
+
if x.is_cuda:
|
| 122 |
+
iden = iden.to(x.get_device())
|
| 123 |
+
x = x + iden
|
| 124 |
+
x = x.view(-1, self.k, self.k)
|
| 125 |
+
return x
|
| 126 |
+
|
| 127 |
+
class MeshSegNet(nn.Module):
|
| 128 |
+
def __init__(self, num_classes=17, num_channels=15, with_dropout=True, dropout_p=0.5):
|
| 129 |
+
super(MeshSegNet, self).__init__()
|
| 130 |
+
self.num_classes = num_classes
|
| 131 |
+
self.num_channels = num_channels
|
| 132 |
+
self.with_dropout = with_dropout
|
| 133 |
+
self.dropout_p = dropout_p
|
| 134 |
+
|
| 135 |
+
# MLP-1 [64, 64]
|
| 136 |
+
self.mlp1_conv1 = torch.nn.Conv1d(self.num_channels, 64, 1)
|
| 137 |
+
self.mlp1_conv2 = torch.nn.Conv1d(64, 64, 1)
|
| 138 |
+
self.mlp1_bn1 = nn.BatchNorm1d(64)
|
| 139 |
+
self.mlp1_bn2 = nn.BatchNorm1d(64)
|
| 140 |
+
# FTM (feature-transformer module)
|
| 141 |
+
self.fstn = STNkd(k=64)
|
| 142 |
+
# GLM-1 (graph-contrained learning modulus)
|
| 143 |
+
self.glm1_conv1_1 = torch.nn.Conv1d(64, 32, 1)
|
| 144 |
+
self.glm1_conv1_2 = torch.nn.Conv1d(64, 32, 1)
|
| 145 |
+
self.glm1_bn1_1 = nn.BatchNorm1d(32)
|
| 146 |
+
self.glm1_bn1_2 = nn.BatchNorm1d(32)
|
| 147 |
+
self.glm1_conv2 = torch.nn.Conv1d(32+32, 64, 1)
|
| 148 |
+
self.glm1_bn2 = nn.BatchNorm1d(64)
|
| 149 |
+
# MLP-2
|
| 150 |
+
self.mlp2_conv1 = torch.nn.Conv1d(64, 64, 1)
|
| 151 |
+
self.mlp2_bn1 = nn.BatchNorm1d(64)
|
| 152 |
+
self.mlp2_conv2 = torch.nn.Conv1d(64, 128, 1)
|
| 153 |
+
self.mlp2_bn2 = nn.BatchNorm1d(128)
|
| 154 |
+
self.mlp2_conv3 = torch.nn.Conv1d(128, 512, 1)
|
| 155 |
+
self.mlp2_bn3 = nn.BatchNorm1d(512)
|
| 156 |
+
# GLM-2 (graph-contrained learning modulus)
|
| 157 |
+
self.glm2_conv1_1 = torch.nn.Conv1d(512, 128, 1)
|
| 158 |
+
self.glm2_conv1_2 = torch.nn.Conv1d(512, 128, 1)
|
| 159 |
+
self.glm2_conv1_3 = torch.nn.Conv1d(512, 128, 1)
|
| 160 |
+
self.glm2_bn1_1 = nn.BatchNorm1d(128)
|
| 161 |
+
self.glm2_bn1_2 = nn.BatchNorm1d(128)
|
| 162 |
+
self.glm2_bn1_3 = nn.BatchNorm1d(128)
|
| 163 |
+
self.glm2_conv2 = torch.nn.Conv1d(128*3, 512, 1)
|
| 164 |
+
self.glm2_bn2 = nn.BatchNorm1d(512)
|
| 165 |
+
# MLP-3
|
| 166 |
+
self.mlp3_conv1 = torch.nn.Conv1d(64+512+512+512, 256, 1)
|
| 167 |
+
self.mlp3_conv2 = torch.nn.Conv1d(256, 256, 1)
|
| 168 |
+
self.mlp3_bn1_1 = nn.BatchNorm1d(256)
|
| 169 |
+
self.mlp3_bn1_2 = nn.BatchNorm1d(256)
|
| 170 |
+
self.mlp3_conv3 = torch.nn.Conv1d(256, 128, 1)
|
| 171 |
+
self.mlp3_conv4 = torch.nn.Conv1d(128, 128, 1)
|
| 172 |
+
self.mlp3_bn2_1 = nn.BatchNorm1d(128)
|
| 173 |
+
self.mlp3_bn2_2 = nn.BatchNorm1d(128)
|
| 174 |
+
# output
|
| 175 |
+
self.output_conv = torch.nn.Conv1d(128, self.num_classes, 1)
|
| 176 |
+
if self.with_dropout:
|
| 177 |
+
self.dropout = nn.Dropout(p=self.dropout_p)
|
| 178 |
+
|
| 179 |
+
def forward(self, x, a_s, a_l):
|
| 180 |
+
batchsize = x.size()[0]
|
| 181 |
+
n_pts = x.size()[2]
|
| 182 |
+
# MLP-1
|
| 183 |
+
x = F.relu(self.mlp1_bn1(self.mlp1_conv1(x)))
|
| 184 |
+
x = F.relu(self.mlp1_bn2(self.mlp1_conv2(x)))
|
| 185 |
+
# FTM
|
| 186 |
+
trans_feat = self.fstn(x)
|
| 187 |
+
x = x.transpose(2, 1)
|
| 188 |
+
x_ftm = torch.bmm(x, trans_feat)
|
| 189 |
+
# GLM-1
|
| 190 |
+
sap = torch.bmm(a_s, x_ftm)
|
| 191 |
+
sap = sap.transpose(2, 1)
|
| 192 |
+
x_ftm = x_ftm.transpose(2, 1)
|
| 193 |
+
x = F.relu(self.glm1_bn1_1(self.glm1_conv1_1(x_ftm)))
|
| 194 |
+
glm_1_sap = F.relu(self.glm1_bn1_2(self.glm1_conv1_2(sap)))
|
| 195 |
+
x = torch.cat([x, glm_1_sap], dim=1)
|
| 196 |
+
x = F.relu(self.glm1_bn2(self.glm1_conv2(x)))
|
| 197 |
+
# MLP-2
|
| 198 |
+
x = F.relu(self.mlp2_bn1(self.mlp2_conv1(x)))
|
| 199 |
+
x = F.relu(self.mlp2_bn2(self.mlp2_conv2(x)))
|
| 200 |
+
x_mlp2 = F.relu(self.mlp2_bn3(self.mlp2_conv3(x)))
|
| 201 |
+
if self.with_dropout:
|
| 202 |
+
x_mlp2 = self.dropout(x_mlp2)
|
| 203 |
+
# GLM-2
|
| 204 |
+
x_mlp2 = x_mlp2.transpose(2, 1)
|
| 205 |
+
sap_1 = torch.bmm(a_s, x_mlp2)
|
| 206 |
+
sap_2 = torch.bmm(a_l, x_mlp2)
|
| 207 |
+
x_mlp2 = x_mlp2.transpose(2, 1)
|
| 208 |
+
sap_1 = sap_1.transpose(2, 1)
|
| 209 |
+
sap_2 = sap_2.transpose(2, 1)
|
| 210 |
+
x = F.relu(self.glm2_bn1_1(self.glm2_conv1_1(x_mlp2)))
|
| 211 |
+
glm_2_sap_1 = F.relu(self.glm2_bn1_2(self.glm2_conv1_2(sap_1)))
|
| 212 |
+
glm_2_sap_2 = F.relu(self.glm2_bn1_3(self.glm2_conv1_3(sap_2)))
|
| 213 |
+
x = torch.cat([x, glm_2_sap_1, glm_2_sap_2], dim=1)
|
| 214 |
+
x_glm2 = F.relu(self.glm2_bn2(self.glm2_conv2(x)))
|
| 215 |
+
# GMP
|
| 216 |
+
x = torch.max(x_glm2, 2, keepdim=True)[0]
|
| 217 |
+
# Upsample
|
| 218 |
+
x = torch.nn.Upsample(n_pts)(x)
|
| 219 |
+
# Dense fusion
|
| 220 |
+
x = torch.cat([x, x_ftm, x_mlp2, x_glm2], dim=1)
|
| 221 |
+
# MLP-3
|
| 222 |
+
x = F.relu(self.mlp3_bn1_1(self.mlp3_conv1(x)))
|
| 223 |
+
x = F.relu(self.mlp3_bn1_2(self.mlp3_conv2(x)))
|
| 224 |
+
x = F.relu(self.mlp3_bn2_1(self.mlp3_conv3(x)))
|
| 225 |
+
if self.with_dropout:
|
| 226 |
+
x = self.dropout(x)
|
| 227 |
+
x = F.relu(self.mlp3_bn2_2(self.mlp3_conv4(x)))
|
| 228 |
+
# output
|
| 229 |
+
x = self.output_conv(x)
|
| 230 |
+
x = x.transpose(2,1).contiguous()
|
| 231 |
+
x = torch.nn.Softmax(dim=-1)(x.view(-1, self.num_classes))
|
| 232 |
+
x = x.view(batchsize, n_pts, self.num_classes)
|
| 233 |
+
|
| 234 |
+
return x
|
| 235 |
+
|
| 236 |
+
def clone_runoob(li1):
|
| 237 |
+
li_copy = li1[:]
|
| 238 |
+
return li_copy
|
| 239 |
+
|
| 240 |
+
# 对离群点重新进行分类
|
| 241 |
+
def class_inlier_outlier(label_list, mean_points,cloud, ind, label_index, points, labels):
|
| 242 |
+
label_change = clone_runoob(labels)
|
| 243 |
+
outlier_index = clone_runoob(label_index)
|
| 244 |
+
ind_reverse = clone_runoob(ind)
|
| 245 |
+
# 得到离群点的label下标
|
| 246 |
+
ind_reverse.reverse()
|
| 247 |
+
for i in ind_reverse:
|
| 248 |
+
outlier_index.pop(i)
|
| 249 |
+
|
| 250 |
+
# 获取离群点
|
| 251 |
+
inlier_cloud = cloud.select_by_index(ind)
|
| 252 |
+
outlier_cloud = cloud.select_by_index(ind, invert=True)
|
| 253 |
+
outlier_points = np.array(outlier_cloud.points)
|
| 254 |
+
|
| 255 |
+
for i in range(len(outlier_points)):
|
| 256 |
+
distance = []
|
| 257 |
+
for j in range(len(mean_points)):
|
| 258 |
+
dis = np.linalg.norm(outlier_points[i] - mean_points[j], ord=2) # 计算tooth和GT质心之间的距离
|
| 259 |
+
distance.append(dis)
|
| 260 |
+
min_index = distance.index(min(distance)) # 获取和离群点质心最近label的index
|
| 261 |
+
outlier_label = label_list[min_index] # 获取离群点应该的label
|
| 262 |
+
index = outlier_index[i]
|
| 263 |
+
label_change[index] = outlier_label
|
| 264 |
+
|
| 265 |
+
return label_change
|
| 266 |
+
|
| 267 |
+
# 利用knn算法消除离群点
|
| 268 |
+
def remove_outlier(points, labels):
|
| 269 |
+
# points = np.array(point_cloud_o3d_orign.points)
|
| 270 |
+
# global label_list
|
| 271 |
+
same_label_points = {}
|
| 272 |
+
|
| 273 |
+
same_label_index = {}
|
| 274 |
+
|
| 275 |
+
mean_points = [] # 所有label种类对应点云的质心坐标
|
| 276 |
+
|
| 277 |
+
label_list = []
|
| 278 |
+
for i in range(len(labels)):
|
| 279 |
+
label_list.append(labels[i])
|
| 280 |
+
label_list = list(set(label_list)) # 去重获从小到大排序取GT_label=[0, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27]
|
| 281 |
+
label_list.sort()
|
| 282 |
+
label_list = label_list[1:]
|
| 283 |
+
|
| 284 |
+
for i in label_list:
|
| 285 |
+
key = i
|
| 286 |
+
points_list = []
|
| 287 |
+
all_label_index = []
|
| 288 |
+
for j in range(len(labels)):
|
| 289 |
+
if labels[j] == i:
|
| 290 |
+
points_list.append(points[j].tolist())
|
| 291 |
+
all_label_index.append(j) # 得到label为 i 的点对应的label的下标
|
| 292 |
+
same_label_points[key] = points_list
|
| 293 |
+
same_label_index[key] = all_label_index
|
| 294 |
+
|
| 295 |
+
tooth_mean = np.mean(points_list, axis=0)
|
| 296 |
+
mean_points.append(tooth_mean)
|
| 297 |
+
# print(mean_points)
|
| 298 |
+
|
| 299 |
+
for i in label_list:
|
| 300 |
+
points_array = same_label_points[i]
|
| 301 |
+
# 建立一个o3d的点云对象
|
| 302 |
+
pcd = o3d.geometry.PointCloud()
|
| 303 |
+
# 使用Vector3dVector方法转换
|
| 304 |
+
pcd.points = o3d.utility.Vector3dVector(points_array)
|
| 305 |
+
|
| 306 |
+
# 对label i 对应的点云进行统计离群值去除,找出离群点并显示
|
| 307 |
+
# 统计式离群点移除
|
| 308 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=200, std_ratio=2.0) # cl是选中的点,ind是选中点index
|
| 309 |
+
# 可视化
|
| 310 |
+
# display_inlier_outlier(pcd, ind)
|
| 311 |
+
|
| 312 |
+
# 对分出来的离群点重新分类
|
| 313 |
+
label_index = same_label_index[i]
|
| 314 |
+
labels = class_inlier_outlier(label_list, mean_points, pcd, ind, label_index, points, labels)
|
| 315 |
+
# print(f"label_change{labels[4400]}")
|
| 316 |
+
|
| 317 |
+
return labels
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
# 消除离群点,保存最后的输出
|
| 321 |
+
def remove_outlier_main(jaw, pcd_points, labels, instances_labels):
|
| 322 |
+
# point_cloud_o3d_orign = o3d.io.read_point_cloud('E:/tooth/data/MeshSegNet-master/test_upsample_15/upsample_01K17AN8_upper_refined.pcd')
|
| 323 |
+
# 原始点
|
| 324 |
+
points = pcd_points.copy()
|
| 325 |
+
label = remove_outlier(points, labels)
|
| 326 |
+
|
| 327 |
+
# 保存json文件
|
| 328 |
+
label_dict = {}
|
| 329 |
+
label_dict["id_patient"] = ""
|
| 330 |
+
label_dict["jaw"] = jaw
|
| 331 |
+
label_dict["labels"] = label.tolist()
|
| 332 |
+
label_dict["instances"] = instances_labels.tolist()
|
| 333 |
+
b = json.dumps(label_dict)
|
| 334 |
+
with open('dental-labels4' + '.json', 'w') as f_obj:
|
| 335 |
+
f_obj.write(b)
|
| 336 |
+
f_obj.close()
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
same_points_list = {}
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
# 体素下采样
|
| 343 |
+
def voxel_filter(point_cloud, leaf_size):
|
| 344 |
+
same_points_list = {}
|
| 345 |
+
filtered_points = []
|
| 346 |
+
# step1 计算边界点
|
| 347 |
+
x_max, y_max, z_max = np.amax(point_cloud, axis=0) # 计算 x,y,z三个维度的最值
|
| 348 |
+
x_min, y_min, z_min = np.amin(point_cloud, axis=0)
|
| 349 |
+
|
| 350 |
+
# step2 确定体素的尺寸
|
| 351 |
+
size_r = leaf_size
|
| 352 |
+
|
| 353 |
+
# step3 计算每个 volex的维度 voxel grid
|
| 354 |
+
Dx = (x_max - x_min) // size_r + 1
|
| 355 |
+
Dy = (y_max - y_min) // size_r + 1
|
| 356 |
+
Dz = (z_max - z_min) // size_r + 1
|
| 357 |
+
|
| 358 |
+
# print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))
|
| 359 |
+
|
| 360 |
+
# step4 计算每个点在volex grid内每一个维度的值
|
| 361 |
+
h = list() # h 为保存索引的列表
|
| 362 |
+
for i in range(len(point_cloud)):
|
| 363 |
+
hx = np.floor((point_cloud[i][0] - x_min) // size_r)
|
| 364 |
+
hy = np.floor((point_cloud[i][1] - y_min) // size_r)
|
| 365 |
+
hz = np.floor((point_cloud[i][2] - z_min) // size_r)
|
| 366 |
+
h.append(hx + hy * Dx + hz * Dx * Dy)
|
| 367 |
+
# print(h[60581])
|
| 368 |
+
|
| 369 |
+
# step5 对h值进行排序
|
| 370 |
+
h = np.array(h)
|
| 371 |
+
h_indice = np.argsort(h) # 提取索引,返回h里面的元素按从小到大排序的 索引
|
| 372 |
+
h_sorted = h[h_indice] # 升序
|
| 373 |
+
count = 0 # 用于维度的累计
|
| 374 |
+
step = 20
|
| 375 |
+
# 将h值相同的点放入到同一个grid中,并进行筛选
|
| 376 |
+
for i in range(1, len(h_sorted)): # 0-19999个数据点
|
| 377 |
+
# if i == len(h_sorted)-1:
|
| 378 |
+
# print("aaa")
|
| 379 |
+
if h_sorted[i] == h_sorted[i - 1] and (i != len(h_sorted) - 1):
|
| 380 |
+
continue
|
| 381 |
+
elif h_sorted[i] == h_sorted[i - 1] and (i == len(h_sorted) - 1):
|
| 382 |
+
point_idx = h_indice[count:]
|
| 383 |
+
key = h_sorted[i - 1]
|
| 384 |
+
same_points_list[key] = point_idx
|
| 385 |
+
_G = np.mean(point_cloud[point_idx], axis=0) # 所有点的重心
|
| 386 |
+
_d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2) # 计算到重心的距离
|
| 387 |
+
_d.sort()
|
| 388 |
+
inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
|
| 389 |
+
for j in inx:
|
| 390 |
+
index = point_idx[j]
|
| 391 |
+
filtered_points.append(point_cloud[index])
|
| 392 |
+
count = i
|
| 393 |
+
elif h_sorted[i] != h_sorted[i - 1] and (i == len(h_sorted) - 1):
|
| 394 |
+
point_idx1 = h_indice[count:i]
|
| 395 |
+
key1 = h_sorted[i - 1]
|
| 396 |
+
same_points_list[key1] = point_idx1
|
| 397 |
+
_G = np.mean(point_cloud[point_idx1], axis=0) # 所有点的重心
|
| 398 |
+
_d = np.linalg.norm(point_cloud[point_idx1] - _G, axis=1, ord=2) # 计算到重心的距离
|
| 399 |
+
_d.sort()
|
| 400 |
+
inx = [j for j in range(0, len(_d), step)] # 获取��定间隔元素下标
|
| 401 |
+
for j in inx:
|
| 402 |
+
index = point_idx1[j]
|
| 403 |
+
filtered_points.append(point_cloud[index])
|
| 404 |
+
|
| 405 |
+
point_idx2 = h_indice[i:]
|
| 406 |
+
key2 = h_sorted[i]
|
| 407 |
+
same_points_list[key2] = point_idx2
|
| 408 |
+
_G = np.mean(point_cloud[point_idx2], axis=0) # 所有点的重心
|
| 409 |
+
_d = np.linalg.norm(point_cloud[point_idx2] - _G, axis=1, ord=2) # 计算到重心的距离
|
| 410 |
+
_d.sort()
|
| 411 |
+
inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
|
| 412 |
+
for j in inx:
|
| 413 |
+
index = point_idx2[j]
|
| 414 |
+
filtered_points.append(point_cloud[index])
|
| 415 |
+
count = i
|
| 416 |
+
|
| 417 |
+
else:
|
| 418 |
+
point_idx = h_indice[count: i]
|
| 419 |
+
key = h_sorted[i - 1]
|
| 420 |
+
same_points_list[key] = point_idx
|
| 421 |
+
_G = np.mean(point_cloud[point_idx], axis=0) # 所有点的重心
|
| 422 |
+
_d = np.linalg.norm(point_cloud[point_idx] - _G, axis=1, ord=2) # 计算到重心的距离
|
| 423 |
+
_d.sort()
|
| 424 |
+
inx = [j for j in range(0, len(_d), step)] # 获取指定间隔元素下标
|
| 425 |
+
for j in inx:
|
| 426 |
+
index = point_idx[j]
|
| 427 |
+
filtered_points.append(point_cloud[index])
|
| 428 |
+
count = i
|
| 429 |
+
|
| 430 |
+
# 把点云格式改成array,并对外返回
|
| 431 |
+
# print(f'filtered_points[0]为{filtered_points[0]}')
|
| 432 |
+
filtered_points = np.array(filtered_points, dtype=np.float64)
|
| 433 |
+
return filtered_points,same_points_list
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
# 体素上采样
|
| 437 |
+
def voxel_upsample(same_points_list, point_cloud, filtered_points, filter_labels, leaf_size):
|
| 438 |
+
upsample_label = []
|
| 439 |
+
upsample_point = []
|
| 440 |
+
upsample_index = []
|
| 441 |
+
# step1 计算边界点
|
| 442 |
+
x_max, y_max, z_max = np.amax(point_cloud, axis=0) # 计算 x,y,z三个维度的最值
|
| 443 |
+
x_min, y_min, z_min = np.amin(point_cloud, axis=0)
|
| 444 |
+
# step2 确定体素的尺寸
|
| 445 |
+
size_r = leaf_size
|
| 446 |
+
# step3 计算每个 volex的维度 voxel grid
|
| 447 |
+
Dx = (x_max - x_min) // size_r + 1
|
| 448 |
+
Dy = (y_max - y_min) // size_r + 1
|
| 449 |
+
Dz = (z_max - z_min) // size_r + 1
|
| 450 |
+
print("Dx x Dy x Dz is {} x {} x {}".format(Dx, Dy, Dz))
|
| 451 |
+
|
| 452 |
+
# step4 计算每个点(采样后的点)在volex grid内每一个维度的值
|
| 453 |
+
h = list()
|
| 454 |
+
for i in range(len(filtered_points)):
|
| 455 |
+
hx = np.floor((filtered_points[i][0] - x_min) // size_r)
|
| 456 |
+
hy = np.floor((filtered_points[i][1] - y_min) // size_r)
|
| 457 |
+
hz = np.floor((filtered_points[i][2] - z_min) // size_r)
|
| 458 |
+
h.append(hx + hy * Dx + hz * Dx * Dy)
|
| 459 |
+
|
| 460 |
+
# step5 根据h值查询字典same_points_list
|
| 461 |
+
h = np.array(h)
|
| 462 |
+
count = 0
|
| 463 |
+
for i in range(1, len(h)):
|
| 464 |
+
if h[i] == h[i - 1] and i != (len(h) - 1):
|
| 465 |
+
continue
|
| 466 |
+
elif h[i] == h[i - 1] and i == (len(h) - 1):
|
| 467 |
+
label = filter_labels[count:]
|
| 468 |
+
key = h[i - 1]
|
| 469 |
+
count = i
|
| 470 |
+
# 累计label次数,classcount:{‘A’:2,'B':1}
|
| 471 |
+
classcount = {}
|
| 472 |
+
for i in range(len(label)):
|
| 473 |
+
vote = label[i]
|
| 474 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
| 475 |
+
# 对map的value排序
|
| 476 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
| 477 |
+
# key = h[i-1]
|
| 478 |
+
point_index = same_points_list[key] # h对应的point index列表
|
| 479 |
+
for j in range(len(point_index)):
|
| 480 |
+
upsample_label.append(sortedclass[0][0])
|
| 481 |
+
index = point_index[j]
|
| 482 |
+
upsample_point.append(point_cloud[index])
|
| 483 |
+
upsample_index.append(index)
|
| 484 |
+
elif h[i] != h[i - 1] and (i == len(h) - 1):
|
| 485 |
+
label1 = filter_labels[count:i]
|
| 486 |
+
key1 = h[i - 1]
|
| 487 |
+
label2 = filter_labels[i:]
|
| 488 |
+
key2 = h[i]
|
| 489 |
+
count = i
|
| 490 |
+
|
| 491 |
+
classcount = {}
|
| 492 |
+
for i in range(len(label1)):
|
| 493 |
+
vote = label1[i]
|
| 494 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
| 495 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
| 496 |
+
# key1 = h[i-1]
|
| 497 |
+
point_index = same_points_list[key1]
|
| 498 |
+
for j in range(len(point_index)):
|
| 499 |
+
upsample_label.append(sortedclass[0][0])
|
| 500 |
+
index = point_index[j]
|
| 501 |
+
upsample_point.append(point_cloud[index])
|
| 502 |
+
upsample_index.append(index)
|
| 503 |
+
|
| 504 |
+
# label2 = filter_labels[i:]
|
| 505 |
+
classcount = {}
|
| 506 |
+
for i in range(len(label2)):
|
| 507 |
+
vote = label2[i]
|
| 508 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
| 509 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
| 510 |
+
# key2 = h[i]
|
| 511 |
+
point_index = same_points_list[key2]
|
| 512 |
+
for j in range(len(point_index)):
|
| 513 |
+
upsample_label.append(sortedclass[0][0])
|
| 514 |
+
index = point_index[j]
|
| 515 |
+
upsample_point.append(point_cloud[index])
|
| 516 |
+
upsample_index.append(index)
|
| 517 |
+
else:
|
| 518 |
+
label = filter_labels[count:i]
|
| 519 |
+
key = h[i - 1]
|
| 520 |
+
count = i
|
| 521 |
+
classcount = {}
|
| 522 |
+
for i in range(len(label)):
|
| 523 |
+
vote = label[i]
|
| 524 |
+
classcount[vote] = classcount.get(vote, 0) + 1
|
| 525 |
+
sortedclass = sorted(classcount.items(), key=lambda x: (x[1]), reverse=True)
|
| 526 |
+
# key = h[i-1]
|
| 527 |
+
point_index = same_points_list[key] # h对应的point index列表
|
| 528 |
+
for j in range(len(point_index)):
|
| 529 |
+
upsample_label.append(sortedclass[0][0])
|
| 530 |
+
index = point_index[j]
|
| 531 |
+
upsample_point.append(point_cloud[index])
|
| 532 |
+
upsample_index.append(index)
|
| 533 |
+
# count = i
|
| 534 |
+
|
| 535 |
+
# 恢复原始顺序
|
| 536 |
+
# print(f'upsample_index[0]的值为{upsample_index[0]}')
|
| 537 |
+
# print(f'upsample_index的总长度为{len(upsample_index)}')
|
| 538 |
+
|
| 539 |
+
# 恢复index原始顺序
|
| 540 |
+
upsample_index = np.array(upsample_index)
|
| 541 |
+
upsample_index_indice = np.argsort(upsample_index) # 提取索引,返回h里面的元素按从小到大排序的 索引
|
| 542 |
+
upsample_index_sorted = upsample_index[upsample_index_indice]
|
| 543 |
+
|
| 544 |
+
upsample_point = np.array(upsample_point)
|
| 545 |
+
upsample_label = np.array(upsample_label)
|
| 546 |
+
# 恢复point和label的原始顺序
|
| 547 |
+
upsample_point_sorted = upsample_point[upsample_index_indice]
|
| 548 |
+
upsample_label_sorted = upsample_label[upsample_index_indice]
|
| 549 |
+
|
| 550 |
+
return upsample_point_sorted, upsample_label_sorted
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
# 利用knn算法上采样
|
| 554 |
+
def KNN_sklearn_Load_data(voxel_points, center_points, labels):
|
| 555 |
+
# 载入数据
|
| 556 |
+
# x_train, x_test, y_train, y_test = train_test_split(center_points, labels, test_size=0.1)
|
| 557 |
+
# 构建模型
|
| 558 |
+
model = neighbors.KNeighborsClassifier(n_neighbors=3)
|
| 559 |
+
model.fit(center_points, labels)
|
| 560 |
+
prediction = model.predict(voxel_points.reshape(1, -1))
|
| 561 |
+
# meshtopoints_labels = classification_report(voxel_points, prediction)
|
| 562 |
+
return prediction[0]
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
# 加载点进行knn上采样
|
| 566 |
+
def Load_data(voxel_points, center_points, labels):
|
| 567 |
+
meshtopoints_labels = []
|
| 568 |
+
# meshtopoints_labels.append(SVC_sklearn_Load_data(voxel_points[i], center_points, labels))
|
| 569 |
+
for i in range(0, voxel_points.shape[0]):
|
| 570 |
+
meshtopoints_labels.append(KNN_sklearn_Load_data(voxel_points[i], center_points, labels))
|
| 571 |
+
return np.array(meshtopoints_labels)
|
| 572 |
+
|
| 573 |
+
# 将三角网格数据上采样回原始点云数据
|
| 574 |
+
def mesh_to_points_main(jaw, pcd_points, center_points, labels):
|
| 575 |
+
points = pcd_points.copy()
|
| 576 |
+
# 下采样
|
| 577 |
+
voxel_points, same_points_list = voxel_filter(points, 0.6)
|
| 578 |
+
|
| 579 |
+
after_labels = Load_data(voxel_points, center_points, labels)
|
| 580 |
+
|
| 581 |
+
upsample_point, upsample_label = voxel_upsample(same_points_list, points, voxel_points, after_labels, 0.6)
|
| 582 |
+
|
| 583 |
+
new_pcd = o3d.geometry.PointCloud()
|
| 584 |
+
new_pcd.points = o3d.utility.Vector3dVector(upsample_point)
|
| 585 |
+
instances_labels = upsample_label.copy()
|
| 586 |
+
# '''
|
| 587 |
+
# o3d.io.write_point_cloud(os.path.join(save_path, 'upsample_' + name + '.pcd'), new_pcd, write_ascii=True)
|
| 588 |
+
for i in range(0, upsample_label.shape[0]):
|
| 589 |
+
if jaw == 'upper':
|
| 590 |
+
if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
|
| 591 |
+
upsample_label[i] = upsample_label[i] + 10
|
| 592 |
+
elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
|
| 593 |
+
upsample_label[i] = upsample_label[i] + 12
|
| 594 |
+
else:
|
| 595 |
+
if (upsample_label[i] >= 1) and (upsample_label[i] <= 8):
|
| 596 |
+
upsample_label[i] = upsample_label[i] + 30
|
| 597 |
+
elif (upsample_label[i] >= 9) and (upsample_label[i] <= 16):
|
| 598 |
+
upsample_label[i] = upsample_label[i] + 32
|
| 599 |
+
remove_outlier_main(jaw, pcd_points, upsample_label, instances_labels)
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
# 将原始点云数据转换为三角网格
|
| 603 |
+
def mesh_grid(pcd_points):
|
| 604 |
+
new_pcd,_ = voxel_filter(pcd_points, 0.6)
|
| 605 |
+
# pcd需要有法向量
|
| 606 |
+
|
| 607 |
+
# estimate radius for rolling ball
|
| 608 |
+
pcd_new = o3d.geometry.PointCloud()
|
| 609 |
+
pcd_new.points = o3d.utility.Vector3dVector(new_pcd)
|
| 610 |
+
pcd_new.estimate_normals()
|
| 611 |
+
distances = pcd_new.compute_nearest_neighbor_distance()
|
| 612 |
+
avg_dist = np.mean(distances)
|
| 613 |
+
radius = 6 * avg_dist
|
| 614 |
+
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(
|
| 615 |
+
pcd_new,
|
| 616 |
+
o3d.utility.DoubleVector([radius, radius * 2]))
|
| 617 |
+
# o3d.io.write_triangle_mesh("./tooth date/test.ply", mesh)
|
| 618 |
+
|
| 619 |
+
return mesh
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
# 读取obj文件内容
|
| 623 |
+
def read_obj(obj_path):
|
| 624 |
+
jaw = None
|
| 625 |
+
with open(obj_path) as file:
|
| 626 |
+
points = []
|
| 627 |
+
faces = []
|
| 628 |
+
while 1:
|
| 629 |
+
line = file.readline()
|
| 630 |
+
if not line:
|
| 631 |
+
break
|
| 632 |
+
strs = line.split(" ")
|
| 633 |
+
if strs[0] == "v":
|
| 634 |
+
points.append((float(strs[1]), float(strs[2]), float(strs[3])))
|
| 635 |
+
elif strs[0] == "f":
|
| 636 |
+
faces.append((int(strs[1]), int(strs[2]), int(strs[3])))
|
| 637 |
+
elif strs[1][0:5] == 'lower':
|
| 638 |
+
jaw = 'lower'
|
| 639 |
+
elif strs[1][0:5] == 'upper':
|
| 640 |
+
jaw = 'upper'
|
| 641 |
+
|
| 642 |
+
points = np.array(points)
|
| 643 |
+
faces = np.array(faces)
|
| 644 |
+
|
| 645 |
+
if jaw is None:
|
| 646 |
+
raise ValueError("Jaw type not found in OBJ file")
|
| 647 |
+
|
| 648 |
+
return points, faces, jaw
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
# obj文件转为pcd文件
|
| 652 |
+
def obj2pcd(obj_path):
|
| 653 |
+
if os.path.exists(obj_path):
|
| 654 |
+
print('yes')
|
| 655 |
+
points, _, jaw = read_obj(obj_path)
|
| 656 |
+
pcd_list = []
|
| 657 |
+
num_points = np.shape(points)[0]
|
| 658 |
+
for i in range(num_points):
|
| 659 |
+
new_line = str(points[i, 0]) + ' ' + str(points[i, 1]) + ' ' + str(points[i, 2])
|
| 660 |
+
pcd_list.append(new_line.split())
|
| 661 |
+
|
| 662 |
+
pcd_points = np.array(pcd_list).astype(np.float64)
|
| 663 |
+
return pcd_points, jaw
|
| 664 |
+
|
| 665 |
+
# Configure Streamlit page
|
| 666 |
+
st.set_page_config(page_title="Teeth Segmentation", page_icon="🦷")
|
| 667 |
+
|
| 668 |
+
class Segment(TeethApp):
|
| 669 |
+
def __init__(self):
|
| 670 |
+
TeethApp.__init__(self)
|
| 671 |
+
self.build_app()
|
| 672 |
+
|
| 673 |
+
def build_app(self):
|
| 674 |
+
|
| 675 |
+
st.title("Segment Intra-oral Scans")
|
| 676 |
+
st.markdown("Select scan for segmentation")
|
| 677 |
+
|
| 678 |
+
inputs = st.radio(
|
| 679 |
+
"Select scan for segmentation:",
|
| 680 |
+
("Upload Scan", "Example Scan"),
|
| 681 |
+
)
|
| 682 |
+
import pyvista as pv
|
| 683 |
+
if inputs == "Example Scan":
|
| 684 |
+
mesh = pv.read("ZOUIF2W4_upper.obj")
|
| 685 |
+
plotter = pv.Plotter()
|
| 686 |
+
|
| 687 |
+
# Add the mesh to the plotter
|
| 688 |
+
plotter.add_mesh(mesh, color='black', show_edges=True)
|
| 689 |
+
visualize = st.button("Segment")
|
| 690 |
+
if visualize:
|
| 691 |
+
stpyvista(plotter)
|
| 692 |
+
|
| 693 |
+
elif inputs == "Upload Scan":
|
| 694 |
+
file = st.file_uploader("Please upload an OBJ Object file", type=["OBJ"])
|
| 695 |
+
|
| 696 |
+
if file is not None:
|
| 697 |
+
# save the uploaded file to disk
|
| 698 |
+
with open("file.obj", "wb") as buffer:
|
| 699 |
+
shutil.copyfileobj(file, buffer)
|
| 700 |
+
# 复制数据
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
obj_path = "file.obj"
|
| 704 |
+
upsampling_method = 'KNN'
|
| 705 |
+
|
| 706 |
+
model_path = 'Mesh_Segementation_MeshSegNet_17_classes_60samples_best.tar'
|
| 707 |
+
num_classes = 17
|
| 708 |
+
num_channels = 15
|
| 709 |
+
|
| 710 |
+
# set model
|
| 711 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 712 |
+
model = MeshSegNet(num_classes=num_classes, num_channels=num_channels).to(device, dtype=torch.float)
|
| 713 |
+
|
| 714 |
+
# load trained model
|
| 715 |
+
# checkpoint = torch.load(os.path.join(model_path, model_name), map_location='cpu')
|
| 716 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
| 717 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 718 |
+
del checkpoint
|
| 719 |
+
model = model.to(device, dtype=torch.float)
|
| 720 |
+
|
| 721 |
+
# cudnn
|
| 722 |
+
torch.backends.cudnn.benchmark = True
|
| 723 |
+
torch.backends.cudnn.enabled = True
|
| 724 |
+
|
| 725 |
+
# Predicting
|
| 726 |
+
model.eval()
|
| 727 |
+
with torch.no_grad():
|
| 728 |
+
pcd_points, jaw = obj2pcd(obj_path)
|
| 729 |
+
mesh = mesh_grid(pcd_points)
|
| 730 |
+
|
| 731 |
+
# move mesh to origin
|
| 732 |
+
with st.spinner("Patience please, AI at work. Grab a coffee while you wait☕!"):
|
| 733 |
+
vertices_points = np.asarray(mesh.vertices)
|
| 734 |
+
triangles_points = np.asarray(mesh.triangles)
|
| 735 |
+
N = triangles_points.shape[0]
|
| 736 |
+
cells = np.zeros((triangles_points.shape[0], 9))
|
| 737 |
+
cells = vertices_points[triangles_points].reshape(triangles_points.shape[0], 9)
|
| 738 |
+
|
| 739 |
+
mean_cell_centers = mesh.get_center()
|
| 740 |
+
cells[:, 0:3] -= mean_cell_centers[0:3]
|
| 741 |
+
cells[:, 3:6] -= mean_cell_centers[0:3]
|
| 742 |
+
cells[:, 6:9] -= mean_cell_centers[0:3]
|
| 743 |
+
|
| 744 |
+
v1 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
|
| 745 |
+
v2 = np.zeros([triangles_points.shape[0], 3], dtype='float32')
|
| 746 |
+
v1[:, 0] = cells[:, 0] - cells[:, 3]
|
| 747 |
+
v1[:, 1] = cells[:, 1] - cells[:, 4]
|
| 748 |
+
v1[:, 2] = cells[:, 2] - cells[:, 5]
|
| 749 |
+
v2[:, 0] = cells[:, 3] - cells[:, 6]
|
| 750 |
+
v2[:, 1] = cells[:, 4] - cells[:, 7]
|
| 751 |
+
v2[:, 2] = cells[:, 5] - cells[:, 8]
|
| 752 |
+
mesh_normals = np.cross(v1, v2)
|
| 753 |
+
mesh_normal_length = np.linalg.norm(mesh_normals, axis=1)
|
| 754 |
+
mesh_normals[:, 0] /= mesh_normal_length[:]
|
| 755 |
+
mesh_normals[:, 1] /= mesh_normal_length[:]
|
| 756 |
+
mesh_normals[:, 2] /= mesh_normal_length[:]
|
| 757 |
+
|
| 758 |
+
# prepare input
|
| 759 |
+
points = vertices_points.copy()
|
| 760 |
+
points[:, 0:3] -= mean_cell_centers[0:3]
|
| 761 |
+
normals = np.nan_to_num(mesh_normals).copy()
|
| 762 |
+
barycenters = np.zeros((triangles_points.shape[0], 3))
|
| 763 |
+
s = np.sum(vertices_points[triangles_points], 1)
|
| 764 |
+
barycenters = 1 / 3 * s
|
| 765 |
+
center_points = barycenters.copy()
|
| 766 |
+
barycenters -= mean_cell_centers[0:3]
|
| 767 |
+
|
| 768 |
+
# normalized data
|
| 769 |
+
maxs = points.max(axis=0)
|
| 770 |
+
mins = points.min(axis=0)
|
| 771 |
+
means = points.mean(axis=0)
|
| 772 |
+
stds = points.std(axis=0)
|
| 773 |
+
nmeans = normals.mean(axis=0)
|
| 774 |
+
nstds = normals.std(axis=0)
|
| 775 |
+
|
| 776 |
+
for i in range(3):
|
| 777 |
+
cells[:, i] = (cells[:, i] - means[i]) / stds[i] # point 1
|
| 778 |
+
cells[:, i + 3] = (cells[:, i + 3] - means[i]) / stds[i] # point 2
|
| 779 |
+
cells[:, i + 6] = (cells[:, i + 6] - means[i]) / stds[i] # point 3
|
| 780 |
+
barycenters[:, i] = (barycenters[:, i] - mins[i]) / (maxs[i] - mins[i])
|
| 781 |
+
normals[:, i] = (normals[:, i] - nmeans[i]) / nstds[i]
|
| 782 |
+
|
| 783 |
+
X = np.column_stack((cells, barycenters, normals))
|
| 784 |
+
|
| 785 |
+
# computing A_S and A_L
|
| 786 |
+
A_S = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
|
| 787 |
+
A_L = np.zeros([X.shape[0], X.shape[0]], dtype='float32')
|
| 788 |
+
D = distance_matrix(X[:, 9:12], X[:, 9:12])
|
| 789 |
+
A_S[D < 0.1] = 1.0
|
| 790 |
+
A_S = A_S / np.dot(np.sum(A_S, axis=1, keepdims=True), np.ones((1, X.shape[0])))
|
| 791 |
+
|
| 792 |
+
A_L[D < 0.2] = 1.0
|
| 793 |
+
A_L = A_L / np.dot(np.sum(A_L, axis=1, keepdims=True), np.ones((1, X.shape[0])))
|
| 794 |
+
|
| 795 |
+
# numpy -> torch.tensor
|
| 796 |
+
X = X.transpose(1, 0)
|
| 797 |
+
X = X.reshape([1, X.shape[0], X.shape[1]])
|
| 798 |
+
X = torch.from_numpy(X).to(device, dtype=torch.float)
|
| 799 |
+
A_S = A_S.reshape([1, A_S.shape[0], A_S.shape[1]])
|
| 800 |
+
A_L = A_L.reshape([1, A_L.shape[0], A_L.shape[1]])
|
| 801 |
+
A_S = torch.from_numpy(A_S).to(device, dtype=torch.float)
|
| 802 |
+
A_L = torch.from_numpy(A_L).to(device, dtype=torch.float)
|
| 803 |
+
|
| 804 |
+
tensor_prob_output = model(X, A_S, A_L).to(device, dtype=torch.float)
|
| 805 |
+
patch_prob_output = tensor_prob_output.cpu().numpy()
|
| 806 |
+
|
| 807 |
+
# refinement
|
| 808 |
+
with st.spinner("Refining..."):
|
| 809 |
+
round_factor = 100
|
| 810 |
+
patch_prob_output[patch_prob_output < 1.0e-6] = 1.0e-6
|
| 811 |
+
|
| 812 |
+
# unaries
|
| 813 |
+
unaries = -round_factor * np.log10(patch_prob_output)
|
| 814 |
+
unaries = unaries.astype(np.int32)
|
| 815 |
+
unaries = unaries.reshape(-1, num_classes)
|
| 816 |
+
|
| 817 |
+
# parawisex
|
| 818 |
+
pairwise = (1 - np.eye(num_classes, dtype=np.int32))
|
| 819 |
+
|
| 820 |
+
cells = cells.copy()
|
| 821 |
+
|
| 822 |
+
cell_ids = np.asarray(triangles_points)
|
| 823 |
+
lambda_c = 20
|
| 824 |
+
edges = np.empty([1, 3], order='C')
|
| 825 |
+
for i_node in range(cells.shape[0]):
|
| 826 |
+
# Find neighbors
|
| 827 |
+
nei = np.sum(np.isin(cell_ids, cell_ids[i_node, :]), axis=1)
|
| 828 |
+
nei_id = np.where(nei == 2)
|
| 829 |
+
for i_nei in nei_id[0][:]:
|
| 830 |
+
if i_node < i_nei:
|
| 831 |
+
cos_theta = np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]) / np.linalg.norm(
|
| 832 |
+
normals[i_node, 0:3]) / np.linalg.norm(normals[i_nei, 0:3])
|
| 833 |
+
if cos_theta >= 1.0:
|
| 834 |
+
cos_theta = 0.9999
|
| 835 |
+
theta = np.arccos(cos_theta)
|
| 836 |
+
phi = np.linalg.norm(barycenters[i_node, :] - barycenters[i_nei, :])
|
| 837 |
+
if theta > np.pi / 2.0:
|
| 838 |
+
edges = np.concatenate(
|
| 839 |
+
(edges, np.array([i_node, i_nei, -np.log10(theta / np.pi) * phi]).reshape(1, 3)), axis=0)
|
| 840 |
+
else:
|
| 841 |
+
beta = 1 + np.linalg.norm(np.dot(normals[i_node, 0:3], normals[i_nei, 0:3]))
|
| 842 |
+
edges = np.concatenate(
|
| 843 |
+
(edges, np.array([i_node, i_nei, -beta * np.log10(theta / np.pi) * phi]).reshape(1, 3)),
|
| 844 |
+
axis=0)
|
| 845 |
+
edges = np.delete(edges, 0, 0)
|
| 846 |
+
edges[:, 2] *= lambda_c * round_factor
|
| 847 |
+
edges = edges.astype(np.int32)
|
| 848 |
+
|
| 849 |
+
refine_labels = cut_from_graph(edges, unaries, pairwise)
|
| 850 |
+
refine_labels = refine_labels.reshape([-1, 1])
|
| 851 |
+
|
| 852 |
+
predicted_labels_3 = refine_labels.reshape(refine_labels.shape[0])
|
| 853 |
+
mesh_to_points_main(jaw, pcd_points, center_points, predicted_labels_3)
|
| 854 |
+
|
| 855 |
+
import pyvista as pv
|
| 856 |
+
|
| 857 |
+
with st.spinner("Rendering..."):
|
| 858 |
+
# Load the .obj file
|
| 859 |
+
mesh = pv.read('file.obj')
|
| 860 |
+
|
| 861 |
+
# Load the JSON file
|
| 862 |
+
with open('dental-labels4.json', 'r') as file:
|
| 863 |
+
labels_data = json.load(file)
|
| 864 |
+
|
| 865 |
+
# Assuming labels_data['labels'] is a list of labels
|
| 866 |
+
labels = labels_data['labels']
|
| 867 |
+
|
| 868 |
+
# Make sure the number of labels matches the number of vertices or faces
|
| 869 |
+
assert len(labels) == mesh.n_points or len(labels) == mesh.n_cells
|
| 870 |
+
|
| 871 |
+
# If labels correspond to vertices
|
| 872 |
+
if len(labels) == mesh.n_points:
|
| 873 |
+
mesh.point_data['Labels'] = labels
|
| 874 |
+
# If labels correspond to faces
|
| 875 |
+
elif len(labels) == mesh.n_cells:
|
| 876 |
+
mesh.cell_data['Labels'] = labels
|
| 877 |
+
|
| 878 |
+
# Create a pyvista plotter
|
| 879 |
+
plotter = pv.Plotter()
|
| 880 |
+
|
| 881 |
+
cmap = plt.cm.get_cmap('jet', 27) # Using a colormap with sufficient distinct colors
|
| 882 |
+
|
| 883 |
+
colors = cmap(np.linspace(0, 1, 27)) # Generate colors
|
| 884 |
+
|
| 885 |
+
# Convert colors to a format acceptable by PyVista
|
| 886 |
+
colormap = mcolors.ListedColormap(colors)
|
| 887 |
+
|
| 888 |
+
# Add the mesh to the plotter with labels as a scalar field
|
| 889 |
+
#plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap='jet')
|
| 890 |
+
plotter.add_mesh(mesh, scalars='Labels', show_scalar_bar=True, cmap=colormap, clim=[0, 27])
|
| 891 |
+
|
| 892 |
+
# Show the plot
|
| 893 |
+
#plotter.show()
|
| 894 |
+
## Send to streamlit
|
| 895 |
+
stpyvista(plotter)
|
| 896 |
+
|
| 897 |
+
if __name__ == "__main__":
|
| 898 |
+
app = Segment()
|
pages/02_📙How_it_Works.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit import session_state as session
|
| 3 |
+
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
class TeethApp:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
# Font
|
| 9 |
+
with open("utils/style.css") as css:
|
| 10 |
+
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
|
| 11 |
+
|
| 12 |
+
# Logo
|
| 13 |
+
self.image_path = "utils/teeth-295404_1280.png"
|
| 14 |
+
self.image = Image.open(self.image_path)
|
| 15 |
+
width, height = self.image.size
|
| 16 |
+
scale = 12
|
| 17 |
+
new_width, new_height = width / scale, height / scale
|
| 18 |
+
self.image = self.image.resize((int(new_width), int(new_height)))
|
| 19 |
+
|
| 20 |
+
# Streamlit side navigation bar
|
| 21 |
+
st.sidebar.markdown("# AI ToothSeg")
|
| 22 |
+
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
|
| 23 |
+
st.sidebar.markdown(" ")
|
| 24 |
+
st.sidebar.image(self.image, use_column_width=False)
|
| 25 |
+
st.markdown(
|
| 26 |
+
"""
|
| 27 |
+
<style>
|
| 28 |
+
.css-1bxukto {
|
| 29 |
+
background-color: rgb(255, 255, 255) ;""",
|
| 30 |
+
unsafe_allow_html=True,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Configure Streamlit page
|
| 34 |
+
st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class Guide(TeethApp):
|
| 38 |
+
def __init__(self):
|
| 39 |
+
TeethApp.__init__(self)
|
| 40 |
+
self.build_app()
|
| 41 |
+
|
| 42 |
+
def build_app(self):
|
| 43 |
+
st.title("AI-assited Tooth Segmentation")
|
| 44 |
+
st.markdown("This app automatically segments intra-oral scans of teeth using machine learning.")
|
| 45 |
+
st.markdown("Head to the 'Segment' tab to try it out!")
|
| 46 |
+
st.markdown("**Example:**")
|
| 47 |
+
st.image("illu.png")
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
app = Guide()
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.28.2
|
| 2 |
+
pyvista==0.36.1
|
| 3 |
+
pythreejs==2.4.2
|
| 4 |
+
stpyvista==0.0.5
|
| 5 |
+
open3d==0.15.1
|
| 6 |
+
torch==1.11.0
|
| 7 |
+
scikit-learn==0.23.2
|
| 8 |
+
scipy==1.5.2
|
| 9 |
+
cython==0.29.21
|
| 10 |
+
matplotlib==3.3.2
|
| 11 |
+
pillow==10.1.0
|
utils/style.css
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
@import url('https://fonts.googleapis.com/css2?family=Nunito:wght@400&display=swap');
|
| 2 |
+
|
| 3 |
+
html,
|
| 4 |
+
body,
|
| 5 |
+
[class*="css"] {
|
| 6 |
+
font-family: 'Nunito';
|
| 7 |
+
/* font-size: 16px; */
|
| 8 |
+
font-weight: 400;
|
| 9 |
+
color: #091747;
|
| 10 |
+
}
|
utils/teeth-295404_1280.png
ADDED
|
ⓘ_Introduction.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit import session_state as session
|
| 3 |
+
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
class TeethApp:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
# Font
|
| 9 |
+
with open("utils/style.css") as css:
|
| 10 |
+
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
|
| 11 |
+
|
| 12 |
+
# Logo
|
| 13 |
+
self.image_path = "utils/teeth-295404_1280.png"
|
| 14 |
+
self.image = Image.open(self.image_path)
|
| 15 |
+
width, height = self.image.size
|
| 16 |
+
scale = 12
|
| 17 |
+
new_width, new_height = width / scale, height / scale
|
| 18 |
+
self.image = self.image.resize((int(new_width), int(new_height)))
|
| 19 |
+
|
| 20 |
+
# Streamlit side navigation bar
|
| 21 |
+
st.sidebar.markdown("# AI ToothSeg")
|
| 22 |
+
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
|
| 23 |
+
st.sidebar.markdown(" ")
|
| 24 |
+
st.sidebar.image(self.image, use_column_width=False)
|
| 25 |
+
st.markdown(
|
| 26 |
+
"""
|
| 27 |
+
<style>
|
| 28 |
+
.css-1bxukto {
|
| 29 |
+
background-color: rgb(255, 255, 255) ;""",
|
| 30 |
+
unsafe_allow_html=True,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Configure Streamlit page
|
| 34 |
+
st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")
|
| 35 |
+
|
| 36 |
+
st.title("AI-assited Tooth Segmentation")
|
| 37 |
+
st.markdown("This app automatically segments intra-oral scans of teeth using machine learning.")
|
| 38 |
+
st.markdown("Head to the 'Segment' tab to try it out!")
|
| 39 |
+
st.markdown("**Example:**")
|
| 40 |
+
st.image("illu.png")
|