File size: 4,248 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import argparse
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn.functional as F
from ocr import OCR
from character_error_rate import CharacterErrorRate
from word_error_rate import WordErrorRate
from torchmetrics.image import (
    PeakSignalNoiseRatio,
    StructuralSimilarityIndexMeasure,
    LearnedPerceptualImagePatchSimilarity,
    FrechetInceptionDistance,
)


class ImageFolderPairDataset(Dataset):
    def __init__(self, dir1, dir2, transform=None):
        self.dir1 = dir1
        self.dir2 = dir2
        self.filenames = sorted(os.listdir(dir1))
        self.transform = transform

    def __len__(self):
        return len(self.filenames)

    def __getitem__(self, idx):
        name = self.filenames[idx]
        img1 = Image.open(os.path.join(self.dir1, name)).convert("RGB")
        img2 = Image.open(os.path.join(self.dir2, name)).convert("RGB")
        if self.transform:
            img1 = self.transform(img1)
            img2 = self.transform(img2)
        return img1, img2


def evaluate(args):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    transform = transforms.Compose(
        [transforms.Resize((args.image_size, args.image_size)), transforms.ToTensor()]
    )

    dataset = ImageFolderPairDataset(
        args.original_dir, args.reconstructed_dir, transform
    )
    loader = DataLoader(
        dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers
    )

    if "cer" in args.metrics or "wer" in args.metrics:
        ocr = OCR(device)

    # Metrics init
    metrics = {}

    if "psnr" in args.metrics:
        metrics["psnr"] = PeakSignalNoiseRatio().to(device)
    if "ssim" in args.metrics:
        metrics["ssim"] = StructuralSimilarityIndexMeasure().to(device)
    if "lpips" in args.metrics:
        metrics["lpips"] = LearnedPerceptualImagePatchSimilarity().to(device)
    if "fid" in args.metrics:
        metrics["fid"] = FrechetInceptionDistance().to(device)
    if "cer" in args.metrics:
        metrics["cer"] = CharacterErrorRate(ocr)
    if "wer" in args.metrics:
        metrics["wer"] = WordErrorRate(ocr)

    for batch in tqdm(loader, desc="Evaluating"):
        # img1, img1_path, img2, img2_path = [b.to(device) for b in batch]
        img1, img2 = [b.to(device) for b in batch]

        if "psnr" in metrics:
            metrics["psnr"].update(img2, img1)
        if "ssim" in metrics:
            metrics["ssim"].update(img2, img1)
        if "lpips" in metrics:
            metrics["lpips"].update(img2, img1)
        if "cer" in metrics:
            metrics["cer"].update(img2, img1)
        if "wer" in metrics:
            metrics["wer"].update(img2, img1)
        if "fid" in metrics:
            img1_uint8 = (img1 * 255).clamp(0, 255).to(torch.uint8)
            img2_uint8 = (img2 * 255).clamp(0, 255).to(torch.uint8)
            metrics["fid"].update(img1_uint8, real=True)
            metrics["fid"].update(img2_uint8, real=False)

    print("\nResults:")
    for name, metric in metrics.items():
        print(f"{name.upper()}", end="\t")
    print()
    for name, metric in metrics.items():
        result = metric.compute().item()
        print(f"{result:.4f}", end="\t")
    print()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--original_dir", type=str, required=True, help="Path to original images"
    )
    parser.add_argument(
        "--reconstructed_dir",
        type=str,
        required=True,
        help="Path to reconstructed images",
    )
    parser.add_argument(
        "--metrics",
        nargs="+",
        default=["psnr", "ssim", "lpips", "fid"],
        help="Metrics to compute: psnr, ssim, lpips, fid",
    )
    parser.add_argument(
        "--batch_size", type=int, default=8, help="Batch size for processing"
    )
    parser.add_argument("--image_size", type=int, default=256, help="Image resize size")
    parser.add_argument(
        "--num_workers", type=int, default=4, help="Number of workers for DataLoader"
    )
    args = parser.parse_args()

    evaluate(args)