File size: 6,104 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import torch.nn as nn
import torch.nn.functional as F

from .quantizer.bsq import BinarySphericalQuantizer
from .quantizer.vq import VectorQuantizer
from .transformer import TransformerDecoder, TransformerEncoder


class VITVQModel(nn.Module):
    def __init__(self, vitconfig, n_embed, embed_dim,
                 l2_norm=False, logit_laplace=False, ckpt_path=None, ignore_keys=[],
                 grad_checkpointing=False, selective_checkpointing=False,
                 clamp_range=(0, 1),
                 dvitconfig=None,
                 ):
        super().__init__()
        self.encoder = TransformerEncoder(**vitconfig)
        dvitconfig = vitconfig if dvitconfig is None else dvitconfig
        self.decoder = TransformerDecoder(**dvitconfig, logit_laplace=logit_laplace)
        if self.training and grad_checkpointing:
            self.encoder.set_grad_checkpointing(True, selective=selective_checkpointing)
            self.decoder.set_grad_checkpointing(True, selective=selective_checkpointing)
        
        self.n_embed = n_embed
        self.embed_dim = embed_dim
        self.l2_norm = l2_norm
        self.setup_quantizer()
        
        self.quant_embed = nn.Linear(in_features=vitconfig['width'], out_features=embed_dim)
        self.post_quant_embed = nn.Linear(in_features=embed_dim, out_features=dvitconfig['width'])
        self.l2_norm = l2_norm
        self.logit_laplace = logit_laplace
        self.clamp_range = clamp_range

        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
    
    def setup_quantizer(self):
        self.quantize = VectorQuantizer(self.n_embed, self.embed_dim, l2_norm=self.l2_norm, beta=0.25, input_format='blc')

    # def init_from_ckpt(self, ckpt_path, ignore_keys=[]):
    def init_from_ckpt(self, state_dict, ignore_keys=[]):
        state_dict = {k[7:]: v for k, v in state_dict.items() if k.startswith('module.')}
        filtered_state_dict = {k: v for k, v in state_dict.items() if all([not k.startswith(ig) for ig in ignore_keys])}
        missing_keys, unexpected_keys = self.load_state_dict(filtered_state_dict, strict=False)
        print(f"missing_keys: {missing_keys}")
        print(f"unexpected_keys: {unexpected_keys}")

    def encode(self, x, skip_quantize=False):
        h = self.encoder(x)
        h = self.quant_embed(h)
        if skip_quantize:
            assert not self.training, 'skip_quantize should be used in eval mode only.'
            if self.l2_norm:
                h = F.normalize(h, dim=-1)
            return h, {}, {}
        quant, loss, info = self.quantize(h)
        return quant, loss, info

    def decode(self, quant):
        h = self.post_quant_embed(quant)
        x = self.decoder(h)
        return x

    def clamp(self, x):
        if self.logit_laplace:
            dec, _ = x.chunk(2, dim=1)
            x = self.logit_laplace_loss.unmap(F.sigmoid(dec))
        else:
            x = x.clamp_(self.clamp_range[0], self.clamp_range[1])
        return x

    def forward(self, input, skip_quantize=False):
        if self.logit_laplace:
            input = self.logit_laplace_loss.inmap(input)
        quant, loss, info = self.encode(input, skip_quantize=skip_quantize)
        dec = self.decode(quant)
        if self.logit_laplace:
            dec, lnb = dec.chunk(2, dim=1)
            logit_laplace_loss = self.logit_laplace_loss(dec, lnb, input)
            info.update({'logit_laplace_loss': logit_laplace_loss})
            dec = self.logit_laplace_loss.unmap(F.sigmoid(dec))
        else:
            dec = dec.clamp_(self.clamp_range[0], self.clamp_range[1])
        return dec, loss, info

    def get_last_layer(self):
        return self.decoder.conv_out.weight


class VITBSQModel(VITVQModel):
    def __init__(self, vitconfig, embed_dim, embed_group_size=9,
                 l2_norm=False, logit_laplace=False, ckpt_path=None, ignore_keys=[],
                 grad_checkpointing=False, selective_checkpointing=False,
                 clamp_range=(0, 1),
                 dvitconfig=None, beta=0., gamma0=1.0, gamma=1.0, zeta=1.0,
                 persample_entropy_compute='group',
                 cb_entropy_compute='group',
                 post_q_l2_norm=False,
                 inv_temperature=1.,
                 ):
        # set quantizer params
        self.beta = beta      # commit loss
        self.gamma0 = gamma0  # entropy
        self.gamma = gamma    # entropy penalty
        self.zeta = zeta      # lpips
        self.embed_group_size = embed_group_size
        self.persample_entropy_compute = persample_entropy_compute
        self.cb_entropy_compute = cb_entropy_compute
        self.post_q_l2_norm = post_q_l2_norm
        self.inv_temperature = inv_temperature
        
        # call init
        super().__init__(
            vitconfig,
            2 ** embed_dim,
            embed_dim,
            l2_norm=l2_norm,
            logit_laplace=logit_laplace,
            ckpt_path=ckpt_path,
            ignore_keys=ignore_keys,
            grad_checkpointing=grad_checkpointing,
            selective_checkpointing=selective_checkpointing,
            clamp_range=clamp_range,
            dvitconfig=dvitconfig,
        )
        

    def setup_quantizer(self):
        self.quantize = BinarySphericalQuantizer(
            self.embed_dim, self.beta, self.gamma0, self.gamma, self.zeta,
            group_size=self.embed_group_size,
            persample_entropy_compute=self.persample_entropy_compute,
            cb_entropy_compute=self.cb_entropy_compute,
            input_format='blc',
            l2_norm=self.post_q_l2_norm,
            inv_temperature=self.inv_temperature,
        )

    def encode(self, x, skip_quantize=False):
        h = self.encoder(x)
        h = self.quant_embed(h)
        if self.l2_norm:
            h = F.normalize(h, dim=-1)
        if skip_quantize:
            assert not self.training, 'skip_quantize should be used in eval mode only.'
            return h, {}, {}
        quant, loss, info = self.quantize(h)
        return quant, loss, info