File size: 29,959 Bytes
14ce5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
"""Model code for FlowMo.
Sources: https://github.com/feizc/FluxMusic/blob/main/train.py
https://github.com/black-forest-labs/flux/tree/main/src/flux
"""
import ast
import itertools
import math
from dataclasses import dataclass
from typing import List, Tuple
import einops
import torch
from einops import rearrange, repeat
from mup import MuReadout
from torch import Tensor, nn
import argparse
import contextlib
import copy
import glob
import os
import subprocess
import tempfile
import time
import fsspec
import psutil
import torch
import torch.distributed as dist
from mup import MuReadout, set_base_shapes
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from .lookup_free_quantize import LFQ
MUP_ENABLED = True
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
b, h, l, d = q.shape
q, k = apply_rope(q, k, pe)
if torch.__version__ == "2.0.1+cu117": # tmp workaround
if d != 64:
print("MUP is broken in this setting! Be careful!")
x = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
)
else:
x = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
scale=8.0 / d if MUP_ENABLED else None,
)
assert x.shape == q.shape
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack(
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)],
dim=-1,
)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def _get_diagonal_gaussian(parameters):
mean, logvar = torch.chunk(parameters, 2, dim=1)
logvar = torch.clamp(logvar, -30.0, 20.0)
return mean, logvar
def _sample_diagonal_gaussian(mean, logvar):
std = torch.exp(0.5 * logvar)
x = mean + std * torch.randn(mean.shape, device=mean.device)
return x
def _kl_diagonal_gaussian(mean, logvar):
var = torch.exp(logvar)
return 0.5 * torch.sum(torch.pow(mean, 2) + var - 1.0 - logvar, dim=1).mean()
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor):
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
self.lin.weight[dim * 2 : dim * 3].data[:] = 0.0
self.lin.bias[dim * 2 : dim * 3].data[:] = 0.0
self.lin.weight[dim * 5 : dim * 6].data[:] = 0.0
self.lin.bias[dim * 5 : dim * 6].data[:] = 0.0
def forward(self, vec: Tensor) -> Tuple[ModulationOut, ModulationOut]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(
self.multiplier, dim=-1
)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float,
qkv_bias: bool = False,
):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor):
pe_single, pe_double = pe
p = 1
if vec is None:
img_mod1, img_mod2 = ModulationOut(0, 1 - p, 1), ModulationOut(0, 1 - p, 1)
txt_mod1, txt_mod2 = ModulationOut(0, 1 - p, 1), ModulationOut(0, 1 - p, 1)
else:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (p + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(
img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads
)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (p + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(
txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads
)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe_double)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp(
(p + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift
)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp(
(p + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift
)
return img, txt
class LastLayer(nn.Module):
def __init__(
self,
hidden_size: int,
patch_size: int,
out_channels: int,
readout_zero_init=False,
):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
if MUP_ENABLED:
self.linear = MuReadout(
hidden_size,
patch_size * patch_size * out_channels,
bias=True,
readout_zero_init=readout_zero_init,
)
else:
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x: Tensor, vec) -> Tensor:
if vec is None:
pass
else:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.norm_final(x)
x = self.linear(x)
return x
@dataclass
class FluxParams:
in_channels: int
patch_size: int
context_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
axes_dim: List[int]
theta: int
qkv_bias: bool
DIT_ZOO = dict(
dit_xl_4=dict(
hidden_size=1152,
mlp_ratio=4.0,
num_heads=16,
axes_dim=[8, 28, 28],
theta=10_000,
qkv_bias=True,
),
dit_l_4=dict(
hidden_size=1024,
mlp_ratio=4.0,
num_heads=16,
axes_dim=[8, 28, 28],
theta=10_000,
qkv_bias=True,
),
dit_b_4=dict(
hidden_size=768,
mlp_ratio=4.0,
num_heads=12,
axes_dim=[8, 28, 28],
theta=10_000,
qkv_bias=True,
),
dit_s_4=dict(
hidden_size=384,
mlp_ratio=4.0,
num_heads=6,
axes_dim=[8, 28, 28],
theta=10_000,
qkv_bias=True,
),
dit_mup_test=dict(
hidden_size=768,
mlp_ratio=4.0,
num_heads=12,
axes_dim=[8, 28, 28],
theta=10_000,
qkv_bias=True,
),
)
def prepare_idxs(img, code_length, patch_size):
bs, c, h, w = img.shape
img_ids = torch.zeros(h // patch_size, w // patch_size, 3, device=img.device)
img_ids[..., 1] = (
img_ids[..., 1] + torch.arange(h // patch_size, device=img.device)[:, None]
)
img_ids[..., 2] = (
img_ids[..., 2] + torch.arange(w // patch_size, device=img.device)[None, :]
)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = (
torch.zeros((bs, code_length, 3), device=img.device)
+ torch.arange(code_length, device=img.device)[None, :, None]
)
return img_ids, txt_ids
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams, name="", lsg=False):
super().__init__()
self.name = name
self.lsg = lsg
self.params = params
self.in_channels = params.in_channels
self.patch_size = params.patch_size
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
)
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(
dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim
)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.txt_in = nn.Linear(params.context_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for idx in range(params.depth)
]
)
self.final_layer_img = LastLayer(
self.hidden_size, 1, self.out_channels, readout_zero_init=False
)
self.final_layer_txt = LastLayer(
self.hidden_size, 1, params.context_dim, readout_zero_init=False
)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
) -> Tensor:
b, c, h, w = img.shape
img = rearrange(
img,
"b c (gh ph) (gw pw) -> b (gh gw) (ph pw c)",
ph=self.patch_size,
pw=self.patch_size,
)
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
img = self.img_in(img)
if timesteps is None:
vec = None
else:
vec = self.time_in(timestep_embedding(timesteps, 256))
txt = self.txt_in(txt)
pe_single = self.pe_embedder(torch.cat((txt_ids,), dim=1))
pe_double = self.pe_embedder(torch.cat((txt_ids, img_ids), dim=1))
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, pe=(pe_single, pe_double), vec=vec)
img = self.final_layer_img(img, vec=vec)
img = rearrange(
img,
"b (gh gw) (ph pw c) -> b c (gh ph) (gw pw)",
ph=self.patch_size,
pw=self.patch_size,
gh=h // self.patch_size,
gw=w // self.patch_size,
)
txt = self.final_layer_txt(txt, vec=vec)
return img, txt, {"final_txt": txt}
def get_weights_to_fix(model):
with torch.no_grad():
for name, module in itertools.chain(model.named_modules()):
if "double_blocks" in name and isinstance(module, torch.nn.Linear):
yield name, module.weight
class FlowMo(nn.Module):
def __init__(self, width, config):
super().__init__()
code_length = config.model.code_length
context_dim = config.model.context_dim
enc_depth = config.model.enc_depth
dec_depth = config.model.dec_depth
patch_size = config.model.patch_size
self.config = config
self.image_size = config.data.image_size
self.patch_size = config.model.patch_size
self.code_length = code_length
self.dit_mode = "dit_b_4"
self.context_dim = context_dim
self.encoder_context_dim = context_dim * (
1 + (self.config.model.quantization_type == "kl")
)
if config.model.quantization_type == "lfq":
self.quantizer = LFQ(
codebook_size=2**self.config.model.codebook_size_for_entropy,
dim=self.config.model.codebook_size_for_entropy,
num_codebooks=1,
token_factorization=False,
)
if self.config.model.enc_mup_width is not None:
enc_width = self.config.model.enc_mup_width
else:
enc_width = width
encoder_params = FluxParams(
in_channels=3 * patch_size**2,
context_dim=self.encoder_context_dim,
patch_size=patch_size,
depth=enc_depth,
**DIT_ZOO[self.dit_mode],
)
decoder_params = FluxParams(
in_channels=3 * patch_size**2,
context_dim=context_dim + 1,
patch_size=patch_size,
depth=dec_depth,
**DIT_ZOO[self.dit_mode],
)
# width=4, dit_b_4 is the usual model
encoder_params.hidden_size = enc_width * (encoder_params.hidden_size // 4)
decoder_params.hidden_size = width * (decoder_params.hidden_size // 4)
encoder_params.axes_dim = [
(d // 4) * enc_width for d in encoder_params.axes_dim
]
decoder_params.axes_dim = [(d // 4) * width for d in decoder_params.axes_dim]
self.encoder = Flux(encoder_params, name="encoder")
self.decoder = Flux(decoder_params, name="decoder")
@torch.compile
def encode(self, img):
b, c, h, w = img.shape
img_idxs, txt_idxs = prepare_idxs(img, self.code_length, self.patch_size)
txt = torch.zeros(
(b, self.code_length, self.encoder_context_dim), device=img.device
)
_, code, aux = self.encoder(img, img_idxs, txt, txt_idxs, timesteps=None)
return code, aux
def _decode(self, img, code, timesteps):
b, c, h, w = img.shape
img_idxs, txt_idxs = prepare_idxs(
img,
self.code_length,
self.patch_size,
)
pred, _, decode_aux = self.decoder(
img, img_idxs, code, txt_idxs, timesteps=timesteps
)
return pred, decode_aux
@torch.compile
def decode(self, *args, **kwargs):
return self._decode(*args, **kwargs)
@torch.compile
def decode_checkpointed(self, *args, **kwargs):
# Need to compile(checkpoint), not checkpoint(compile)
assert not kwargs, kwargs
return torch.utils.checkpoint.checkpoint(
self._decode,
*args,
# WARNING: Do not use_reentrant=True with compile, it will silently
# produce incorrect gradients!
use_reentrant=False,
)
@torch.compile
def _quantize(self, code):
"""
Args:
code: [b codelength context dim]
Returns:
quantized code of the same shape
"""
b, t, f = code.shape
indices = None
if self.config.model.quantization_type == "noop":
quantized = code
quantizer_loss = torch.tensor(0.0).to(code.device)
elif self.config.model.quantization_type == "kl":
# colocating features of same token before split is maybe slightly
# better?
mean, logvar = _get_diagonal_gaussian(
einops.rearrange(code, "b t f -> b (f t)")
)
code = einops.rearrange(
_sample_diagonal_gaussian(mean, logvar),
"b (f t) -> b t f",
f=f // 2,
t=t,
)
quantizer_loss = _kl_diagonal_gaussian(mean, logvar)
elif self.config.model.quantization_type == "lfq":
assert f % self.config.model.codebook_size_for_entropy == 0, f
code = einops.rearrange(
code,
"b t (fg fh) -> b fg (t fh)",
fg=self.config.model.codebook_size_for_entropy,
)
(quantized, entropy_aux_loss, indices), breakdown = self.quantizer(
code, return_loss_breakdown=True
)
assert quantized.shape == code.shape
quantized = einops.rearrange(quantized, "b fg (t fh) -> b t (fg fh)", t=t)
quantizer_loss = (
entropy_aux_loss * self.config.model.entropy_loss_weight
+ breakdown.commitment * self.config.model.commit_loss_weight
)
code = quantized
else:
raise NotImplementedError
return code, indices, quantizer_loss
# def forward(
# self,
# img,
# noised_img,
# timesteps,
# enable_cfg=True,
# ):
# aux = {}
#
# code, encode_aux = self.encode(img)
#
# aux["original_code"] = code
#
# b, t, f = code.shape
#
# code, _, aux["quantizer_loss"] = self._quantize(code)
#
# mask = torch.ones_like(code[..., :1])
# code = torch.concatenate([code, mask], axis=-1)
# code_pre_cfg = code
#
# if self.config.model.enable_cfg and enable_cfg:
# cfg_mask = (torch.rand((b,), device=code.device) > 0.1)[:, None, None]
# code = code * cfg_mask
#
# v_est, decode_aux = self.decode(noised_img, code, timesteps)
# aux.update(decode_aux)
#
# if self.config.model.posttrain_sample:
# aux["posttrain_sample"] = self.reconstruct_checkpoint(code_pre_cfg)
#
# return v_est, aux
def forward(self, img):
return self.reconstruct(img)
def reconstruct_checkpoint(self, code):
with torch.autocast(
"cuda",
dtype=torch.bfloat16,
):
bs, *_ = code.shape
z = torch.randn((bs, 3, self.image_size, self.image_size)).cuda()
ts = (
torch.rand((bs, self.config.model.posttrain_sample_k + 1))
.cumsum(dim=1)
.cuda()
)
ts = ts - ts[:, :1]
ts = (ts / ts[:, -1:]).flip(dims=(1,))
dts = ts[:, :-1] - ts[:, 1:]
for i, (t, dt) in enumerate((zip(ts.T, dts.T))):
if self.config.model.posttrain_sample_enable_cfg:
mask = (torch.rand((bs,), device=code.device) > 0.1)[
:, None, None
].to(code.dtype)
code_t = code * mask
else:
code_t = code
vc, _ = self.decode_checkpointed(z, code_t, t)
z = z - dt[:, None, None, None] * vc
return z
@torch.no_grad()
def reconstruct(self, images, dtype=torch.bfloat16, code=None):
"""
Args:
images in [bchw] [-1, 1]
Returns:
images in [bchw] [-1, 1]
"""
model = self
config = self.config.eval.sampling
with torch.autocast(
"cuda",
dtype=dtype,
):
bs, c, h, w = images.shape
if code is None:
x = images.cuda()
prequantized_code = model.encode(x)[0].cuda()
code, indices, _ = model._quantize(prequantized_code)
z = torch.randn((bs, 3, h, w)).cuda()
mask = torch.ones_like(code[..., :1])
code = torch.concatenate([code * mask, mask], axis=-1)
cfg_mask = 0.0
null_code = code * cfg_mask if config.cfg != 1.0 else None
samples = rf_sample(
model,
z,
code,
null_code=null_code,
sample_steps=config.sample_steps,
cfg=config.cfg,
schedule=config.schedule,
)[-1].clip(-1, 1)
return samples.to(torch.float32), code, prequantized_code
def rf_loss(config, model, batch, aux_state):
x = batch["image"]
b = x.size(0)
if config.opt.schedule == "lognormal":
nt = torch.randn((b,)).to(x.device)
t = torch.sigmoid(nt)
elif config.opt.schedule == "fat_lognormal":
nt = torch.randn((b,)).to(x.device)
t = torch.sigmoid(nt)
t = torch.where(torch.rand_like(t) <= 0.9, t, torch.rand_like(t))
elif config.opt.schedule == "uniform":
t = torch.rand((b,), device=x.device)
elif config.opt.schedule.startswith("debug"):
p = float(config.opt.schedule.split("_")[1])
t = torch.ones((b,), device=x.device) * p
else:
raise NotImplementedError
t = t.view([b, *([1] * len(x.shape[1:]))])
z1 = torch.randn_like(x)
zt = (1 - t) * x + t * z1
zt, t = zt.to(x.dtype), t.to(x.dtype)
vtheta, aux = model(
img=x,
noised_img=zt,
timesteps=t.reshape((b,)),
)
diff = z1 - vtheta - x
x_pred = zt - vtheta * t
loss = ((diff) ** 2).mean(dim=list(range(1, len(x.shape))))
loss = loss.mean()
aux["loss_dict"] = {}
aux["loss_dict"]["diffusion_loss"] = loss
aux["loss_dict"]["quantizer_loss"] = aux["quantizer_loss"]
if config.opt.lpips_weight != 0.0:
aux_loss = 0.0
if config.model.posttrain_sample:
x_pred = aux["posttrain_sample"]
lpips_dist = aux_state["lpips_model"](x, x_pred)
lpips_dist = (config.opt.lpips_weight * lpips_dist).mean() + aux_loss
aux["loss_dict"]["lpips_loss"] = lpips_dist
else:
lpips_dist = 0.0
loss = loss + aux["quantizer_loss"] + lpips_dist
aux["loss_dict"]["total_loss"] = loss
return loss, aux
def _edm_to_flow_convention(noise_level):
# z = x + \sigma z'
return noise_level / (1 + noise_level)
def rf_sample(
model,
z,
code,
null_code=None,
sample_steps=25,
cfg=2.0,
schedule="linear",
):
b = z.size(0)
if schedule == "linear":
ts = torch.arange(1, sample_steps + 1).flip(0) / sample_steps
dts = torch.ones_like(ts) * (1.0 / sample_steps)
elif schedule.startswith("pow"):
p = float(schedule.split("_")[1])
ts = torch.arange(0, sample_steps + 1).flip(0) ** (1 / p) / sample_steps ** (
1 / p
)
dts = ts[:-1] - ts[1:]
else:
raise NotImplementedError
if model.config.eval.sampling.cfg_interval is None:
interval = None
else:
cfg_lo, cfg_hi = ast.literal_eval(model.config.eval.sampling.cfg_interval)
interval = _edm_to_flow_convention(cfg_lo), _edm_to_flow_convention(cfg_hi)
images = []
for i, (t, dt) in enumerate((zip(ts, dts))):
timesteps = torch.tensor([t] * b).to(z.device)
vc, decode_aux = model.decode(img=z, timesteps=timesteps, code=code)
if null_code is not None and (
interval is None
or ((t.item() >= interval[0]) and (t.item() <= interval[1]))
):
vu, _ = model.decode(img=z, timesteps=timesteps, code=null_code)
vc = vu + cfg * (vc - vu)
z = z - dt * vc
images.append(z)
return images
def build_model(config):
with tempfile.TemporaryDirectory() as log_dir:
MUP_ENABLED = config.model.enable_mup
model_partial = FlowMo
shared_kwargs = dict(config=config)
model = model_partial(
**shared_kwargs,
width=config.model.mup_width,
).cuda()
if config.model.enable_mup:
print("Mup enabled!")
with torch.device("cpu"):
base_model = model_partial(
**shared_kwargs, width=config.model.mup_width
)
delta_model = model_partial(
**shared_kwargs,
width=(
config.model.mup_width * 4 if config.model.mup_width == 1 else 1
),
)
true_model = model_partial(
**shared_kwargs, width=config.model.mup_width
)
if torch.distributed.is_initialized():
bsh_path = os.path.join(log_dir, f"{dist.get_rank()}.bsh")
else:
bsh_path = os.path.join(log_dir, "0.bsh")
set_base_shapes(
true_model, base_model, delta=delta_model, savefile=bsh_path
)
model = set_base_shapes(model, base=bsh_path)
for module in model.modules():
if isinstance(module, MuReadout):
module.width_mult = lambda: module.weight.infshape.width_mult()
return model
|