File size: 8,944 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import torch
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F


def swish(x):
    # swish
    return x * torch.sigmoid(x)


class ResBlock(nn.Module):
    def __init__(
        self,
        in_filters,
        out_filters,
        use_conv_shortcut=False,
        use_agn=False,
    ) -> None:
        super().__init__()

        self.in_filters = in_filters
        self.out_filters = out_filters
        self.use_conv_shortcut = use_conv_shortcut
        self.use_agn = use_agn

        if not use_agn:  ## agn is GroupNorm likewise skip it if has agn before
            self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6)
        self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6)

        self.conv1 = nn.Conv2d(
            in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False
        )
        self.conv2 = nn.Conv2d(
            out_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False
        )

        if in_filters != out_filters:
            if self.use_conv_shortcut:
                self.conv_shortcut = nn.Conv2d(
                    in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False
                )
            else:
                self.nin_shortcut = nn.Conv2d(
                    in_filters, out_filters, kernel_size=(1, 1), padding=0, bias=False
                )

    def forward(self, x, **kwargs):
        residual = x

        if not self.use_agn:
            x = self.norm1(x)
        x = swish(x)
        x = self.conv1(x)
        x = self.norm2(x)
        x = swish(x)
        x = self.conv2(x)
        if self.in_filters != self.out_filters:
            if self.use_conv_shortcut:
                residual = self.conv_shortcut(residual)
            else:
                residual = self.nin_shortcut(residual)

        return x + residual


class Encoder(nn.Module):
    def __init__(
        self,
        *,
        ch,
        out_ch,
        in_channels,
        num_res_blocks,
        z_channels,
        ch_mult=(1, 2, 2, 4),
        resolution,
        double_z=False,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.z_channels = z_channels
        self.resolution = resolution

        self.num_res_blocks = num_res_blocks
        self.num_blocks = len(ch_mult)

        self.conv_in = nn.Conv2d(
            in_channels, ch, kernel_size=(3, 3), padding=1, bias=False
        )

        ## construct the model
        self.down = nn.ModuleList()

        in_ch_mult = (1,) + tuple(ch_mult)
        for i_level in range(self.num_blocks):
            block = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]  # [1, 1, 2, 2, 4]
            block_out = ch * ch_mult[i_level]  # [1, 2, 2, 4]
            for _ in range(self.num_res_blocks):
                block.append(ResBlock(block_in, block_out))
                block_in = block_out

            down = nn.Module()
            down.block = block
            if i_level < self.num_blocks - 1:
                down.downsample = nn.Conv2d(
                    block_out, block_out, kernel_size=(3, 3), stride=(2, 2), padding=1
                )

            self.down.append(down)

        ### mid
        self.mid_block = nn.ModuleList()
        for res_idx in range(self.num_res_blocks):
            self.mid_block.append(ResBlock(block_in, block_in))

        ### end
        self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6)
        self.conv_out = nn.Conv2d(block_out, z_channels, kernel_size=(1, 1))

    def forward(self, x):

        ## down
        x = self.conv_in(x)
        for i_level in range(self.num_blocks):
            for i_block in range(self.num_res_blocks):
                x = self.down[i_level].block[i_block](x)

            if i_level < self.num_blocks - 1:
                x = self.down[i_level].downsample(x)

        ## mid
        for res in range(self.num_res_blocks):
            x = self.mid_block[res](x)

        x = self.norm_out(x)
        x = swish(x)
        x = self.conv_out(x)

        return x


class Decoder(nn.Module):
    def __init__(
        self,
        *,
        ch,
        out_ch,
        in_channels,
        num_res_blocks,
        z_channels,
        ch_mult=(1, 2, 2, 4),
        resolution,
        double_z=False,
    ) -> None:
        super().__init__()

        self.ch = ch
        self.num_blocks = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        block_in = ch * ch_mult[self.num_blocks - 1]

        self.conv_in = nn.Conv2d(
            z_channels, block_in, kernel_size=(3, 3), padding=1, bias=True
        )

        self.mid_block = nn.ModuleList()
        for res_idx in range(self.num_res_blocks):
            self.mid_block.append(ResBlock(block_in, block_in))

        self.up = nn.ModuleList()

        self.adaptive = nn.ModuleList()

        for i_level in reversed(range(self.num_blocks)):
            block = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            self.adaptive.insert(0, AdaptiveGroupNorm(z_channels, block_in))
            for i_block in range(self.num_res_blocks):
                # if i_block == 0:
                #     block.append(ResBlock(block_in, block_out, use_agn=True))
                # else:
                block.append(ResBlock(block_in, block_out))
                block_in = block_out

            up = nn.Module()
            up.block = block
            if i_level > 0:
                up.upsample = Upsampler(block_in)
            self.up.insert(0, up)

        self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6)

        self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=(3, 3), padding=1)

    def forward(self, z):

        style = z.clone()  # for adaptive groupnorm

        z = self.conv_in(z)

        ## mid
        for res in range(self.num_res_blocks):
            z = self.mid_block[res](z)

        ## upsample
        for i_level in reversed(range(self.num_blocks)):
            ### pass in each resblock first adaGN
            z = self.adaptive[i_level](z, style)
            for i_block in range(self.num_res_blocks):
                z = self.up[i_level].block[i_block](z)

            if i_level > 0:
                z = self.up[i_level].upsample(z)

        z = self.norm_out(z)
        z = swish(z)
        z = self.conv_out(z)

        return z


def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor:
    """Depth-to-Space DCR mode (depth-column-row) core implementation.

    Args:
        x (torch.Tensor): input tensor. The channels-first (*CHW) layout is supported.
        block_size (int): block side size
    """
    # check inputs
    if x.dim() < 3:
        raise ValueError(
            f"Expecting a channels-first (*CHW) tensor of at least 3 dimensions"
        )
    c, h, w = x.shape[-3:]

    s = block_size**2
    if c % s != 0:
        raise ValueError(
            f"Expecting a channels-first (*CHW) tensor with C divisible by {s}, but got C={c} channels"
        )

    outer_dims = x.shape[:-3]

    # splitting two additional dimensions from the channel dimension
    x = x.view(-1, block_size, block_size, c // s, h, w)

    # putting the two new dimensions along H and W
    x = x.permute(0, 3, 4, 1, 5, 2)

    # merging the two new dimensions with H and W
    x = x.contiguous().view(*outer_dims, c // s, h * block_size, w * block_size)

    return x


class Upsampler(nn.Module):
    def __init__(self, dim, dim_out=None):
        super().__init__()
        dim_out = dim * 4
        self.conv1 = nn.Conv2d(dim, dim_out, (3, 3), padding=1)
        self.depth2space = depth_to_space

    def forward(self, x):
        """
        input_image: [B C H W]
        """
        out = self.conv1(x)
        out = self.depth2space(out, block_size=2)
        return out


class AdaptiveGroupNorm(nn.Module):
    def __init__(self, z_channel, in_filters, num_groups=32, eps=1e-6):
        super().__init__()
        self.gn = nn.GroupNorm(
            num_groups=32, num_channels=in_filters, eps=eps, affine=False
        )
        # self.lin = nn.Linear(z_channels, in_filters * 2)
        self.gamma = nn.Linear(z_channel, in_filters)
        self.beta = nn.Linear(z_channel, in_filters)
        self.eps = eps

    def forward(self, x, quantizer):
        B, C, _, _ = x.shape
        # quantizer = F.adaptive_avg_pool2d(quantizer, (1, 1))
        ### calcuate var for scale
        scale = rearrange(quantizer, "b c h w -> b c (h w)")
        scale = scale.var(dim=-1) + self.eps  # not unbias
        scale = scale.sqrt()
        scale = self.gamma(scale).view(B, C, 1, 1)

        ### calculate mean for bias
        bias = rearrange(quantizer, "b c h w -> b c (h w)")
        bias = bias.mean(dim=-1)
        bias = self.beta(bias).view(B, C, 1, 1)

        x = self.gn(x)
        x = scale * x + bias

        return x