File size: 6,780 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""This file contains code for LPIPS.

This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates.

Reference:
    https://github.com/richzhang/PerceptualSimilarity/
    https://github.com/CompVis/taming-transformers/blob/master/taming/modules/losses/lpips.py
    https://github.com/CompVis/taming-transformers/blob/master/taming/util.py
"""

import os
import hashlib
import requests
from collections import namedtuple
from tqdm import tqdm

import torch
import torch.nn as nn

from torchvision import models

_LPIPS_MEAN = [-0.030, -0.088, -0.188]
_LPIPS_STD = [0.458, 0.448, 0.450]


URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"}

CKPT_MAP = {"vgg_lpips": "vgg.pth"}

MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"}


def download(url, local_path, chunk_size=1024):
    os.makedirs(os.path.split(local_path)[0], exist_ok=True)
    with requests.get(url, stream=True) as r:
        total_size = int(r.headers.get("content-length", 0))
        with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
            with open(local_path, "wb") as f:
                for data in r.iter_content(chunk_size=chunk_size):
                    if data:
                        f.write(data)
                        pbar.update(chunk_size)


def md5_hash(path):
    with open(path, "rb") as f:
        content = f.read()
    return hashlib.md5(content).hexdigest()


def get_ckpt_path(name, root, check=False):
    assert name in URL_MAP
    path = os.path.join(root, CKPT_MAP[name])
    if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
        print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
        download(URL_MAP[name], path)
        md5 = md5_hash(path)
        assert md5 == MD5_MAP[name], md5
    return path


class LPIPS(nn.Module):
    # Learned perceptual metric.
    def __init__(self, use_dropout=True):
        super().__init__()
        self.scaling_layer = ScalingLayer()
        self.chns = [64, 128, 256, 512, 512]  # vg16 features
        self.net = vgg16(pretrained=True, requires_grad=False)
        self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
        self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
        self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
        self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
        self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
        self.load_pretrained()
        for param in self.parameters():
            param.requires_grad = False

    def load_pretrained(self):
        workspace = os.environ.get("WORKSPACE", "")
        VGG_PATH = get_ckpt_path(
            "vgg_lpips", os.path.join(workspace, "models/vgg_lpips.pth"), check=True
        )
        self.load_state_dict(
            torch.load(VGG_PATH, map_location=torch.device("cpu")), strict=False
        )

    def forward(self, input, target):
        # Notably, the LPIPS w/ pre-trained weights expect the input in the range of [-1, 1].
        # However, our codebase assumes all inputs are in range of [0, 1], and thus a scaling is needed.
        input = input * 2.0 - 1.0
        target = target * 2.0 - 1.0
        in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
        outs0, outs1 = self.net(in0_input), self.net(in1_input)
        feats0, feats1, diffs = {}, {}, {}
        lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
        for kk in range(len(self.chns)):
            feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(
                outs1[kk]
            )
            diffs[kk] = (feats0[kk] - feats1[kk]) ** 2

        res = [
            spatial_average(lins[kk].model(diffs[kk]), keepdim=True)
            for kk in range(len(self.chns))
        ]
        val = res[0]
        for l in range(1, len(self.chns)):
            val += res[l]
        return val


class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        self.register_buffer("shift", torch.Tensor(_LPIPS_MEAN)[None, :, None, None])
        self.register_buffer("scale", torch.Tensor(_LPIPS_STD)[None, :, None, None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale


class NetLinLayer(nn.Module):
    """A single linear layer which does a 1x1 conv."""

    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()
        layers = (
            [
                nn.Dropout(),
            ]
            if (use_dropout)
            else []
        )
        layers += [
            nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
        ]
        self.model = nn.Sequential(*layers)


class vgg16(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super(vgg16, self).__init__()
        vgg_pretrained_features = models.vgg16(
            weights=models.VGG16_Weights.IMAGENET1K_V1
        ).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(23, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1_2 = h
        h = self.slice2(h)
        h_relu2_2 = h
        h = self.slice3(h)
        h_relu3_3 = h
        h = self.slice4(h)
        h_relu4_3 = h
        h = self.slice5(h)
        h_relu5_3 = h
        vgg_outputs = namedtuple(
            "VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"]
        )
        out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
        return out


def normalize_tensor(x, eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
    return x / (norm_factor + eps)


def spatial_average(x, keepdim=True):
    return x.mean([2, 3], keepdim=keepdim)