File size: 8,008 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Vector quantizer.

Copyright (2024) Bytedance Ltd. and/or its affiliates

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Reference:
    https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vqvae/quantize.py
    https://github.com/google-research/magvit/blob/main/videogvt/models/vqvae.py
    https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/distributions/distributions.py
    https://github.com/lyndonzheng/CVQ-VAE/blob/main/quantise.py
"""

from typing import Mapping, Text, Tuple

import torch
from einops import rearrange
from accelerate.utils.operations import gather
from torch.cuda.amp import autocast


class VectorQuantizer(torch.nn.Module):
    def __init__(
        self,
        codebook_size: int = 1024,
        token_size: int = 256,
        commitment_cost: float = 0.25,
        use_l2_norm: bool = False,
        clustering_vq: bool = False,
    ):
        super().__init__()
        self.codebook_size = codebook_size
        self.token_size = token_size
        self.commitment_cost = commitment_cost

        self.embedding = torch.nn.Embedding(codebook_size, token_size)
        self.embedding.weight.data.uniform_(-1.0 / codebook_size, 1.0 / codebook_size)
        self.use_l2_norm = use_l2_norm

        self.clustering_vq = clustering_vq
        if clustering_vq:
            self.decay = 0.99
            self.register_buffer("embed_prob", torch.zeros(self.codebook_size))

    # Ensure quantization is performed using f32
    @autocast(enabled=False)
    def forward(
        self, z: torch.Tensor
    ) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
        z = z.float()
        z = rearrange(z, "b c h w -> b h w c").contiguous()
        z_flattened = rearrange(z, "b h w c -> (b h w) c")
        unnormed_z_flattened = z_flattened

        if self.use_l2_norm:
            z_flattened = torch.nn.functional.normalize(z_flattened, dim=-1)
            embedding = torch.nn.functional.normalize(self.embedding.weight, dim=-1)
        else:
            embedding = self.embedding.weight
        d = (
            torch.sum(z_flattened**2, dim=1, keepdim=True)
            + torch.sum(embedding**2, dim=1)
            - 2 * torch.einsum("bd,dn->bn", z_flattened, embedding.T)
        )

        min_encoding_indices = torch.argmin(d, dim=1)  # num_ele
        z_quantized = self.get_codebook_entry(min_encoding_indices).view(z.shape)

        if self.use_l2_norm:
            z = torch.nn.functional.normalize(z, dim=-1)

        # compute loss for embedding
        commitment_loss = self.commitment_cost * torch.mean(
            (z_quantized.detach() - z) ** 2
        )
        codebook_loss = torch.mean((z_quantized - z.detach()) ** 2)

        if self.clustering_vq and self.training:
            with torch.no_grad():
                # Gather distance matrix from all GPUs.
                encoding_indices = gather(min_encoding_indices)
                if len(min_encoding_indices.shape) != 1:
                    raise ValueError(
                        f"min_encoding_indices in a wrong shape, {min_encoding_indices.shape}"
                    )
                # Compute and update the usage of each entry in the codebook.
                encodings = torch.zeros(
                    encoding_indices.shape[0], self.codebook_size, device=z.device
                )
                encodings.scatter_(1, encoding_indices.unsqueeze(1), 1)
                avg_probs = torch.mean(encodings, dim=0)
                self.embed_prob.mul_(self.decay).add_(avg_probs, alpha=1 - self.decay)
                # Closest sampling to update the codebook.
                all_d = gather(d)
                all_unnormed_z_flattened = gather(unnormed_z_flattened).detach()
                if all_d.shape[0] != all_unnormed_z_flattened.shape[0]:
                    raise ValueError(
                        "all_d and all_unnormed_z_flattened have different length"
                        + f"{all_d.shape}, {all_unnormed_z_flattened.shape}"
                    )
                indices = torch.argmin(all_d, dim=0)
                random_feat = all_unnormed_z_flattened[indices]
                # Decay parameter based on the average usage.
                decay = (
                    torch.exp(
                        -(self.embed_prob * self.codebook_size * 10) / (1 - self.decay)
                        - 1e-3
                    )
                    .unsqueeze(1)
                    .repeat(1, self.token_size)
                )
                self.embedding.weight.data = (
                    self.embedding.weight.data * (1 - decay) + random_feat * decay
                )

        loss = commitment_loss + codebook_loss

        # preserve gradients
        z_quantized = z + (z_quantized - z).detach()

        # reshape back to match original input shape
        z_quantized = rearrange(z_quantized, "b h w c -> b c h w").contiguous()

        result_dict = dict(
            quantizer_loss=loss,
            commitment_loss=commitment_loss,
            codebook_loss=codebook_loss,
            min_encoding_indices=min_encoding_indices.view(
                z_quantized.shape[0], z_quantized.shape[2], z_quantized.shape[3]
            ),
        )

        return z_quantized, result_dict

    def get_codebook_entry(self, indices):
        if len(indices.shape) == 1:
            z_quantized = self.embedding(indices)
        elif len(indices.shape) == 2:
            z_quantized = torch.einsum("bd,dn->bn", indices, self.embedding.weight)
        else:
            raise NotImplementedError
        if self.use_l2_norm:
            z_quantized = torch.nn.functional.normalize(z_quantized, dim=-1)
        return z_quantized


class DiagonalGaussianDistribution(object):
    @autocast(enabled=False)
    def __init__(self, parameters, deterministic=False):
        """Initializes a Gaussian distribution instance given the parameters.

        Args:
            parameters (torch.Tensor): The parameters for the Gaussian distribution. It is expected
                to be in shape [B, 2 * C, *], where B is batch size, and C is the embedding dimension.
                First C channels are used for mean and last C are used for logvar in the Gaussian distribution.
            deterministic (bool): Whether to use deterministic sampling. When it is true, the sampling results
                is purely based on mean (i.e., std = 0).
        """
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters.float(), 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(
                device=self.parameters.device
            )

    @autocast(enabled=False)
    def sample(self):
        x = self.mean.float() + self.std.float() * torch.randn(self.mean.shape).to(
            device=self.parameters.device
        )
        return x

    @autocast(enabled=False)
    def mode(self):
        return self.mean

    @autocast(enabled=False)
    def kl(self):
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            return 0.5 * torch.sum(
                torch.pow(self.mean.float(), 2)
                + self.var.float()
                - 1.0
                - self.logvar.float(),
                dim=[1, 2],
            )