File size: 7,040 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# this file is taken from https://github.com/autonomousvision/stylegan-t/blob/36ab80ce76237fefe03e65e9b3161c040ae888e3/training/diffaug.py
import math

import torch
import torch.nn.functional as F


def load_png(file_name: str):
    from torchvision.io import read_image

    return (
        read_image(file_name).float().div_(255).mul_(2).sub_(1).unsqueeze(0)
    )  # to [-1, 1]


def show(tensor):  # from [-1, 1]
    from torchvision.utils import make_grid
    from torchvision.transforms.functional import to_pil_image

    if tensor.shape[0] == 1:
        tensor = tensor[0]
    if tensor.ndim == 3:
        to_pil_image(tensor.add(1).div_(2).clamp_(0, 1).detach().cpu()).convert(
            "RGB"
        ).show()
    else:
        to_pil_image(
            make_grid(tensor.add(1).div_(2).clamp_(0, 1).detach().cpu())
        ).convert("RGB").show()


class DiffAug(object):
    def __init__(self, prob=1.0, cutout=0.2):  # todo: swin ratio = 0.5, T&XL = 0.2
        self.grids = {}
        self.prob = abs(prob)
        self.using_cutout = prob > 0
        self.cutout = cutout
        self.img_channels = -1
        self.last_blur_radius = -1
        self.last_blur_kernel_h = self.last_blur_kernel_w = None

    def get_grids(self, B, x, y, dev):
        if (B, x, y) in self.grids:
            return self.grids[(B, x, y)]

        self.grids[(B, x, y)] = ret = torch.meshgrid(
            torch.arange(B, dtype=torch.long, device=dev),
            torch.arange(x, dtype=torch.long, device=dev),
            torch.arange(y, dtype=torch.long, device=dev),
            indexing="ij",
        )
        return ret

    def aug(self, BCHW: torch.Tensor, warmup_blur_schedule: float = 0) -> torch.Tensor:
        # warmup blurring
        if BCHW.dtype != torch.float32:
            BCHW = BCHW.float()
        if warmup_blur_schedule > 0:
            self.img_channels = BCHW.shape[1]
            sigma0 = (BCHW.shape[-2] * 0.5) ** 0.5
            sigma = sigma0 * warmup_blur_schedule
            blur_radius = math.floor(sigma * 3)  # 3-sigma is enough for Gaussian
            if blur_radius >= 1:
                if self.last_blur_radius != blur_radius:
                    self.last_blur_radius = blur_radius
                    gaussian = torch.arange(
                        -blur_radius,
                        blur_radius + 1,
                        dtype=torch.float32,
                        device=BCHW.device,
                    )
                    gaussian = gaussian.mul_(1 / sigma).square_().neg_().exp2_()
                    gaussian.div_(gaussian.sum())  # normalize
                    self.last_blur_kernel_h = (
                        gaussian.view(1, 1, 2 * blur_radius + 1, 1)
                        .repeat(self.img_channels, 1, 1, 1)
                        .contiguous()
                    )
                    self.last_blur_kernel_w = (
                        gaussian.view(1, 1, 1, 2 * blur_radius + 1)
                        .repeat(self.img_channels, 1, 1, 1)
                        .contiguous()
                    )

                BCHW = F.pad(
                    BCHW,
                    [blur_radius, blur_radius, blur_radius, blur_radius],
                    mode="reflect",
                )
                BCHW = F.conv2d(
                    input=BCHW,
                    weight=self.last_blur_kernel_h,
                    bias=None,
                    groups=self.img_channels,
                )
                BCHW = F.conv2d(
                    input=BCHW,
                    weight=self.last_blur_kernel_w,
                    bias=None,
                    groups=self.img_channels,
                )
                # BCHW = filter2d(BCHW, f.div_(f.sum()))  # no need to specify padding (filter2d will add padding in itself based on filter size)

        if self.prob < 1e-6:
            return BCHW
        trans, color, cut = torch.rand(3) <= self.prob
        trans, color, cut = trans.item(), color.item(), cut.item()
        B, dev = BCHW.shape[0], BCHW.device
        rand01 = torch.rand(7, B, 1, 1, device=dev) if (trans or color or cut) else None

        raw_h, raw_w = BCHW.shape[-2:]
        if trans:
            ratio = 0.125
            delta_h = round(raw_h * ratio)
            delta_w = round(raw_w * ratio)
            translation_h = (
                rand01[0].mul(delta_h + delta_h + 1).floor().long() - delta_h
            )
            translation_w = (
                rand01[1].mul(delta_w + delta_w + 1).floor().long() - delta_w
            )
            # translation_h = torch.randint(-delta_h, delta_h+1, size=(B, 1, 1), device=dev)
            # translation_w = torch.randint(-delta_w, delta_w+1, size=(B, 1, 1), device=dev)

            grid_B, grid_h, grid_w = self.get_grids(B, raw_h, raw_w, dev)
            grid_h = (grid_h + translation_h).add_(1).clamp_(0, raw_h + 1)
            grid_w = (grid_w + translation_w).add_(1).clamp_(0, raw_w + 1)
            bchw_pad = F.pad(BCHW, [1, 1, 1, 1, 0, 0, 0, 0])
            BCHW = (
                bchw_pad.permute(0, 2, 3, 1)
                .contiguous()[grid_B, grid_h, grid_w]
                .permute(0, 3, 1, 2)
                .contiguous()
            )

        if color:
            BCHW = BCHW.add(rand01[2].unsqueeze(-1).sub(0.5))
            # BCHW.add_(torch.rand(B, 1, 1, 1, dtype=BCHW.dtype, device=dev).sub_(0.5))
            bchw_mean = BCHW.mean(dim=1, keepdim=True)
            BCHW = (
                BCHW.sub(bchw_mean).mul(rand01[3].unsqueeze(-1).mul(2)).add_(bchw_mean)
            )
            # BCHW.sub_(bchw_mean).mul_(torch.rand(B, 1, 1, 1, dtype=BCHW.dtype, device=dev).mul_(2)).add_(bchw_mean)
            bchw_mean = BCHW.mean(dim=(1, 2, 3), keepdim=True)
            BCHW = (
                BCHW.sub(bchw_mean)
                .mul(rand01[4].unsqueeze(-1).add(0.5))
                .add_(bchw_mean)
            )
            # BCHW.sub_(bchw_mean).mul_(torch.rand(B, 1, 1, 1, dtype=BCHW.dtype, device=dev).add_(0.5)).add_(bchw_mean)

        if self.using_cutout and cut:
            ratio = self.cutout  # todo: styleswin ratio = 0.5, T&XL = 0.2
            cutout_h = round(raw_h * ratio)
            cutout_w = round(raw_w * ratio)
            offset_h = rand01[5].mul(raw_h + (1 - cutout_h % 2)).floor().long()
            offset_w = rand01[6].mul(raw_w + (1 - cutout_w % 2)).floor().long()
            # offset_h = torch.randint(0, raw_h + (1 - cutout_h % 2), size=(B, 1, 1), device=dev)
            # offset_w = torch.randint(0, raw_w + (1 - cutout_w % 2), size=(B, 1, 1), device=dev)

            grid_B, grid_h, grid_w = self.get_grids(B, cutout_h, cutout_w, dev)
            grid_h = (grid_h + offset_h).sub_(cutout_h // 2).clamp(min=0, max=raw_h - 1)
            grid_w = (grid_w + offset_w).sub_(cutout_w // 2).clamp(min=0, max=raw_w - 1)
            mask = torch.ones(B, raw_h, raw_w, dtype=BCHW.dtype, device=dev)
            mask[grid_B, grid_h, grid_w] = 0
            BCHW = BCHW.mul(mask.unsqueeze(1))

        return BCHW