File size: 25,725 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
import os
import sys

sys.path.append("/home/xiangl/LlamaGen")
import logging
import json
import numpy as np
import torch.distributed
from tqdm.auto import tqdm
from PIL import Image
from logging import getLogger as get_logger
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as NativeDDP
from torch.utils.data import DataLoader, default_collate
from utils2 import (
    init_distributed_device,
    is_global_primary,
    is_primary,
    seed_everything,
    str2bool,
)
from tokenizer.tokenizer_image.msvq_model import VQ_models
from datasets import (
    create_dataset,
    fast_collate,
    PrefetchLoader,
    Normalize,
    Denormalize,
)

from timm.optim import create_optimizer_v2 as create_optimizer
from timm.scheduler import create_scheduler_v2 as create_scheduler

import argparse

logger = get_logger(__name__)


def parse_args():
    parser = argparse.ArgumentParser()

    # config file
    parser.add_argument(
        "--config",
        type=str,
        default="configs/vqgan/imagenet/vqvae_vq_dinov2base_v4096z16n64_pretrained_ae.yaml",
        help="config file used to specify parameters",
    )

    # data
    parser.add_argument(
        "--data_dir", type=str, default="imagenet/train", help="data folder"
    )
    parser.add_argument(
        "--dataset_name", type=str, default="imagenet", help="dataset name"
    )
    parser.add_argument(
        "--val_data_dir", type=str, default="imagenet/val", help="data folder"
    )
    parser.add_argument("--image_size", type=int, default=256, help="image size")
    parser.add_argument("--batch_size", type=int, default=4, help="per gpu batch size")
    parser.add_argument("--num_workers", type=int, default=8, help="batch size")
    parser.add_argument(
        "--num_classes", type=int, default=1000, help="number of classes in dataset"
    )
    parser.add_argument(
        "--use_prefetcher", type=str2bool, default=True, help="use prefetch"
    )

    # training
    parser.add_argument("--run_name", type=str, default=None, help="run_name")
    parser.add_argument(
        "--output_dir", type=str, default="experiments", help="output folder"
    )
    parser.add_argument("--num_epochs", type=int, default=10)
    parser.add_argument("--optimizer", type=str, default="adamw", help="optimizer")
    parser.add_argument(
        "--learning_rate", type=float, default=1e-4, help="learning rate"
    )
    parser.add_argument("--min_lr", type=float, default=5e-5, help="end learning rate")
    parser.add_argument("--weight_decay", type=float, default=1e-4, help="weight decay")
    parser.add_argument(
        "--lr_scheduler", type=str, default="cosine", help="lr scheduler"
    )
    parser.add_argument(
        "--lr_warmup_epochs", type=float, default=1, help="warmup epochs"
    )
    parser.add_argument(
        "--log_interval", type=int, default=50, help="log interval for steps"
    )
    parser.add_argument(
        "--val_interval", type=int, default=1000, help="validation interval for epochs"
    )
    parser.add_argument("--save_interval", type=int, default=1, help="save interval")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="gradient accumulation steps",
    )
    parser.add_argument(
        "--gradient_clip", type=float, default=1.0, help="gradient clip"
    )
    parser.add_argument(
        "--torchcompile", type=str2bool, default=False, help="use torch compile"
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="wandb",
        help="report to",
        choices=["wandb", "tensorboard", "none"],
    )
    parser.add_argument(
        "--resume", type=str, default=None, help="resume from pre-trained checkpoint"
    )
    parser.add_argument(
        "--auto_resume",
        type=str2bool,
        default=False,
        help="auto resume from latest checkpoint",
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="bf16",
        choices=["fp16", "bf16", "fp32"],
        help="mixed precision",
    )
    parser.add_argument(
        "--ema", type=float, default=0, help="ema updates of the models"
    )
    parser.add_argument("--beta1", type=int, default=0.9, help="beta1 for adam")
    parser.add_argument("--beta2", type=int, default=0.99, help="beta2 for adam")
    parser.add_argument(
        "--quantizer_lr_multiplier",
        type=float,
        default=1.0,
        help="lr multiplier for quantization",
    )
    parser.add_argument(
        "--compile", type=str2bool, default=False, help="use torch compile"
    )

    # loss weight
    parser.add_argument(
        "--disc_adaptive",
        type=str2bool,
        default=True,
        help="flag of whether to use adaptive discriminator weight",
    )
    parser.add_argument(
        "--disc_loss_start",
        type=float,
        default=0,
        help="starting threshold of adaptive discriminator weight for discriminator training",
    )
    parser.add_argument(
        "--disc_loss_weight", type=float, default=0.8, help="discriminator loss weight"
    )
    parser.add_argument(
        "--gen_disc_loss_weight",
        type=float,
        default=0.1,
        help="discriminator loss weight of generator",
    )
    parser.add_argument(
        "--gen_disc_loss_type",
        type=str,
        default="non-saturating",
        choices=["hinge", "vanilla", "non-saturating"],
        help="generator loss type",
    )
    parser.add_argument(
        "--disc_loss_type",
        type=str,
        default="hinge",
        choices=["hinge", "vanilla", "non-saturating"],
        help="discriminator loss type",
    )
    parser.add_argument(
        "--disc_model",
        type=str,
        default="patchgan",
        choices=["patchgan", "stylegan"],
        help="discriminator loss type",
    )
    parser.add_argument(
        "--lecam_loss_weight",
        type=float,
        default=0.0,
        help="lecam regularization loss weight of discriminator",
    )
    parser.add_argument(
        "--codebook_loss_weight", type=float, default=1.0, help="codebook loss weight"
    )
    parser.add_argument(
        "--perceptual_loss_weight",
        type=float,
        default=0.1,
        help="perceptual loss weight",
    )
    parser.add_argument(
        "--logit_scale_loss_weight",
        type=float,
        default=0.1,
        help="logit_scale loss weight",
    )
    parser.add_argument(
        "--rec_loss_weight", type=float, default=1.0, help="rec loss weight"
    )

    parser.add_argument(
        "--ent_loss_weight", type=float, default=0.1, help="entropy loss weight"
    )
    parser.add_argument(
        "--ent_loss_weight_end", type=float, default=0.0, help="entropy loss weight"
    )
    parser.add_argument(
        "--ent_loss_start", type=float, default=1.0, help="start to add entropy loss"
    )
    parser.add_argument(
        "--ent_loss_annealing_steps",
        type=float,
        default=2000,
        help="steps to anneal entropy loss weight",
    )
    parser.add_argument(
        "--sem_loss_weight", type=float, default=0.01, help="semantic loss weight"
    )
    parser.add_argument(
        "--ent_sample_min_loss_weight",
        type=float,
        default=1.0,
        help="sample entropy minimization loss weight",
    )
    parser.add_argument(
        "--ent_batch_max_loss_weight",
        type=float,
        default=1.0,
        help="batch entropy maximization loss weight",
    )

    # vqvae
    parser.add_argument(
        "--recon_loss",
        type=str,
        default="l1",
        choices=["l1", "l2"],
        help="reconstruction loss",
    )
    parser.add_argument(
        "--quantizer",
        type=str,
        default="vq",
        choices=[
            "vq",
            "gumbel_vq",
            "st_gumbel_vq",
            "ema_vq",
            "oc_vq",
            "diff_vq",
            "diff_vq2",
            "diff_vq_fix",
        ],
        help="quantizer type",
    )
    parser.add_argument(
        "--encoder", type=str, default="dinov2", help="encoder model type"
    )
    parser.add_argument(
        "--decoder", type=str, default="dinov2", help="deocder model type"
    )
    parser.add_argument(
        "--encoder_model",
        type=str,
        default="vit_small_patch14_dinov2.lvd142m",
        help="encoder model name",
    )
    parser.add_argument(
        "--encoder_model_pretrained",
        type=str2bool,
        default=True,
        help="encoder model load pretrained checkpoint",
    )
    parser.add_argument(
        "--encoder_patch_size", type=int, default=16, help="encoder patch size"
    )
    parser.add_argument(
        "--encoder_tuning", type=str, default="lora", help="encoder tuning method"
    )
    parser.add_argument(
        "--encoder_tuning_lora_r", default=8, type=int, help="encoder tuning lora r"
    )
    parser.add_argument(
        "--encoder_drop_path", type=float, default=0.0, help="encoder droppath rate"
    )
    parser.add_argument(
        "--decoder_model",
        type=str,
        default="vit_small_patch14_dinov2.lvd142m",
        help="deocder model name",
    )
    parser.add_argument(
        "--decoder_model_pretrained",
        type=str2bool,
        default=True,
        help="decoder model load pretrained checkpoint",
    )
    parser.add_argument(
        "--decoder_patch_size", type=int, default=16, help="decoder patch size"
    )
    parser.add_argument(
        "--decoder_drop_path", type=float, default=0.0, help="decoder droppath rate"
    )
    parser.add_argument(
        "--decoder_to_pixel",
        type=str,
        default="linear",
        help="decoder to pixel",
        choices=["linear", "conv", "ada_conv", "siren"],
    )
    parser.add_argument(
        "--decoder_use_rope", type=str2bool, default=False, help="decoder use RoPE"
    )
    parser.add_argument(
        "--decoder_cond_latent",
        type=str2bool,
        default=False,
        help="use dino latent to initialize latent tokens (mask token)",
    )
    parser.add_argument(
        "--decoder_tuning", type=str, default="lora", help="deocder tuning method"
    )
    parser.add_argument(
        "--decoder_tuning_lora_r", default=8, type=int, help="decoder tuning lora r"
    )
    parser.add_argument(
        "--pretrained_path", type=str, default=None, help="pretrained model path"
    )
    parser.add_argument(
        "--semantic_guide",
        type=str,
        default="none",
        help="semantic guidance on latent tokens",
    )
    parser.add_argument(
        "--sem_loss_scale", type=float, default=15.0, help="scale for clip loss"
    )
    parser.add_argument(
        "--renorm_input", type=str2bool, default=False, help="normalize input images"
    )

    parser.add_argument(
        "--vocab_size", type=int, default=4096, nargs="+", help="codebook size"
    )
    parser.add_argument(
        "--z_channels", type=int, default=32, help="latent size of vqvae"
    )
    parser.add_argument(
        "--num_latent_tokens", type=int, default=32, help="number of latent tokens"
    )
    parser.add_argument(
        "--codebook_norm", type=str2bool, default=True, help="normalize codebook"
    )
    parser.add_argument(
        "--use_gumbel",
        type=str2bool,
        default=False,
        help="use gumbel softmax for probs",
    )
    parser.add_argument(
        "--commit_loss_weight", type=float, default=0.0, help="commit loss weight"
    )
    parser.add_argument(
        "--kl_loss_weight", type=float, default=5e-4, help="kl loss weight"
    )
    parser.add_argument(
        "--ema_decay",
        type=float,
        default=0.999,
        help="ema decay for embeddings of ema quantizer",
    )
    parser.add_argument(
        "--oc_anchor",
        type=str,
        default="cloest",
        help="online cluster anchor",
        choices=["closest", "random", "projrandom"],
    )
    parser.add_argument(
        "--contrastive_loss_weight",
        type=float,
        default=1.0,
        help="contrastive loss weight",
    )
    parser.add_argument(
        "--freq_loss_weight", type=float, default=0.0, help="freq loss weight"
    )
    parser.add_argument(
        "--disc_r1_gamma", type=float, default=0.0, help="disc do r1 reg"
    )
    parser.add_argument(
        "--use_diffaug", type=str2bool, default=False, help="use diff aug"
    )
    parser.add_argument(
        "--init_logit_scale",
        type=float,
        default=10,
        help="initial logit scale before log",
    )
    parser.add_argument(
        "--max_logit_scale",
        type=float,
        default=200,
        help="maximum logit scale before log",
    )

    parser.add_argument(
        "--v_patch_nums",
        type=int,
        default=[1, 2, 3, 4, 5, 6, 8, 10, 13, 16],
        nargs="+",
        help="number of patch numbers of each scale",
    )
    parser.add_argument(
        "--codebook-size",
        type=int,
        default=16384,
        help="codebook size for vector quantization",
    )
    parser.add_argument(
        "--codebook-embed-dim",
        type=int,
        default=8,
        help="codebook dimension for vector quantization",
    )
    parser.add_argument(
        "--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16"
    )
    parser.add_argument(
        "--vq-ckpt", type=str, default=None, help="ckpt path for resume training"
    )
    parser.add_argument(
        "--output_path",
        type=str,
        default="output/linear_probing",
        help="output model path",
    )
    parser.add_argument("--enc_type", type=str, default="cnn")
    parser.add_argument("--dec_type", type=str, default="cnn")
    # fFirst parse of command-line args to check for config file
    # args = parser.parse_args()

    # # If a config file is specified, load it and set defaults
    # if args.config is not None:
    #     with open(args.config, 'r', encoding='utf-8') as f:
    #         file_yaml = yaml.YAML()
    #         config_args = file_yaml.load(f)
    #         parser.set_defaults(**config_args)

    # re-parse command-line args to overwrite with any command-line inputs
    args = parser.parse_args()
    return args


class LinearClassifier(nn.Module):
    def __init__(self, in_dim, out_dim):
        super(LinearClassifier, self).__init__()
        self.bn = nn.BatchNorm1d(in_dim, affine=False, eps=1e-6)
        self.linear = nn.Linear(in_dim, out_dim)

    def forward(self, x):
        x = x.mean(dim=1)
        x = self.bn(x)
        out = self.linear(x)
        return out


@torch.no_grad()
def extract_feature(vqvae, images, args):

    if args.distributed:

        z_e = vqvae.module.encoder(images)
        if args.enc_type == "dinov2":
            b, l, c = z_e.shape
            z_e = z_e.view(b, 16, 16, c)
            z_e = z_e.permute(0, 3, 1, 2)
        z_e = vqvae.module.quant_conv(z_e)
        # z_q, _, _ = vqvae.module.quantize(z_e)

    else:
        z_e = vqvae.encoder(images)
        if args.enc_type == "dinov2":
            b, l, c = z_e.shape
            z_e = z_e.view(b, 16, 16, c)
            z_e = z_e.permute(0, 3, 1, 2)
        z_e = vqvae.quant_conv(z_e)
        # z_q, _, _ = vqvae.quantize(z_e)

    return z_e


def train_epoch(
    vqvae, linear_classifier, train_dataloader, optimizer, device, scaler, args
):
    criterion = torch.nn.CrossEntropyLoss()
    linear_classifier.train()
    train_dtype = {
        "none": torch.float32,
        "bf16": torch.bfloat16,
        "fp16": torch.float16,
    }[args.mixed_precision]
    total_loss = 0
    total_correct = 0
    total_samples = 0
    if args.renorm_input:
        denormalize = Denormalize(
            mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], device=device
        )
        normalize = Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], device=device
        )

    for idx, batch in tqdm(
        enumerate(train_dataloader),
        total=len(train_dataloader),
        disable=not is_primary(args),
    ):
        # features, labels = batch
        # features, labels = features.to(device), labels.to(device)

        optimizer.zero_grad()

        images, labels = batch
        if not args.use_prefetcher:
            images = images.to(device)
            labels = labels.to(device)

        if args.renorm_input:
            input_images = denormalize(images)
            input_images = normalize(input_images)
        else:
            input_images = images

        with torch.cuda.amp.autocast(dtype=train_dtype):

            features = extract_feature(vqvae, input_images, args).detach()

            features = features.flatten(2).permute(0, 2, 1)
            logits = linear_classifier(features)
            loss = criterion(logits, labels)

        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()
        total_loss += loss.item()
        total_correct += (logits.argmax(1) == labels).sum().item()
        total_samples += labels.size(0)

        if is_primary(args) and idx % 25 == 0:
            logger.info(f"Training Loss: {loss.item():.4f}")
            logger.info(f"Training Acc: {total_correct / total_samples * 100.0:.4f}")
    return total_loss / len(train_dataloader), total_correct / total_samples * 100.0


def evaluate(vqvae, linear_classifier, val_dataloader, device, args):
    dtype = {"none": torch.float32, "bf16": torch.bfloat16, "fp16": torch.float16}[
        args.mixed_precision
    ]
    criterion = torch.nn.CrossEntropyLoss()
    linear_classifier.eval()
    total_loss = 0
    total_correct = 0
    total_samples = 0
    if args.renorm_input:
        denormalize = Denormalize(
            mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], device=device
        )
        normalize = Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], device=device
        )

    with torch.no_grad():
        for batch in tqdm(
            val_dataloader, total=len(val_dataloader), disable=not is_primary(args)
        ):
            # features, labels = batch
            # features, labels = features.to(device), labels.to(device)
            images, labels = batch
            images = images.to(device)
            labels = labels.to(device)

            if args.renorm_input:
                input_images = denormalize(images)
                input_images = normalize(input_images)
            else:
                input_images = images

            with torch.cuda.amp.autocast(dtype=dtype):
                features = extract_feature(vqvae, input_images, args)
                features = features.flatten(2).permute(0, 2, 1)
                # z = extract_feature(vqvae, images, args)
                logits = linear_classifier(features)
                loss = criterion(logits, labels)

            total_loss += loss.item()
            total_correct += (logits.argmax(1) == labels).sum().item()
            total_samples += labels.size(0)
    return total_loss / len(val_dataloader), total_correct / total_samples * 100.0


def main():

    args = parse_args()

    # seed
    seed_everything(args.seed)

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    device = init_distributed_device(args)
    if args.distributed:
        logger.info(
            "Training in distributed mode with multiple processes, 1 device per process."
            f"Process {args.rank}, total {args.world_size}, device {args.device}."
        )
        os.environ["HF_HOME"] = f"./hf_cache_{args.rank}/"
        os.environ["TRANSFORMERS_CACHE"] = f"./hf_cache_{args.rank}/"
    else:
        logger.info(f"Training with a single process on 1 device ({args.device}).")
    assert args.rank >= 0

    # create and load model
    logger.info("Creating model")
    # create and load model
    vqvae = VQ_models[args.vq_model](
        codebook_size=args.codebook_size,
        codebook_embed_dim=args.codebook_embed_dim,
        v_patch_nums=args.v_patch_nums,
        enc_type=args.enc_type,
        dec_type=args.dec_type,
        semantic_guide=args.semantic_guide,
    )
    vqvae.to(device)
    vqvae.eval()
    checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
    if "ema" in checkpoint:  # ema
        model_weight = checkpoint["ema"]
    elif "model" in checkpoint:  # ddp
        model_weight = checkpoint["model"]
    elif "state_dict" in checkpoint:
        model_weight = checkpoint["state_dict"]
    else:
        raise Exception("please check model weight")
    vqvae.load_state_dict(model_weight)
    del checkpoint

    # create linear classifier
    linear_classifier = LinearClassifier(vqvae.codebook_embed_dim, args.num_classes)
    linear_classifier = linear_classifier.to(device)

    if args.distributed:
        if is_primary(args):
            logger.info("Using native Torch DistributedDataParallel.")
        vqvae = NativeDDP(vqvae, device_ids=[device], find_unused_parameters=True)
        linear_classifier = NativeDDP(
            linear_classifier, device_ids=[device], find_unused_parameters=True
        )

    logger.info("Creating dataset")
    train_dataset = create_dataset(
        args.dataset_name,
        args.data_dir,
        args.image_size,
        is_train=True,
        use_prefetcher=args.use_prefetcher,
    )
    valid_dataset = create_dataset(
        args.dataset_name,
        args.val_data_dir,
        args.image_size,
        is_train=False,
        use_prefetcher=False,
    )
    sampler = None
    if args.distributed:
        sampler = torch.utils.data.DistributedSampler(
            train_dataset, shuffle=True, drop_last=False
        )
    shuffle = sampler is None
    collate_fn = fast_collate if args.use_prefetcher else default_collate
    train_dataloader = DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=True,
        sampler=sampler,
        shuffle=shuffle,
        collate_fn=collate_fn,
    )
    if args.use_prefetcher:
        train_dataloader = PrefetchLoader(
            train_dataloader, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], device=device
        )
    val_dataloader = DataLoader(
        valid_dataset,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=True,
        shuffle=False,
    )
    total_batch_size = args.batch_size * args.world_size

    # create output folder
    # output_dir = os.path.join(args.output_dir, args.run_name, 'evaluations')
    output_dir = args.output_path
    output_dir = os.path.join(output_dir, "evaluations")
    os.makedirs(output_dir, exist_ok=True)
    lp_model_dir = os.path.join(output_dir, args.dataset_name)
    os.makedirs(lp_model_dir, exist_ok=True)

    optimizer = create_optimizer(
        linear_classifier,
        opt=args.optimizer,
        lr=args.learning_rate,
        weight_decay=args.weight_decay,
    )
    scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision == "fp16"))
    scheduler, _ = create_scheduler(
        sched="step",
        decay_milestones=[
            int(args.num_epochs * 0.3),
            int(args.num_epochs * 0.6),
            int(args.num_epochs * 0.9),
        ],
        optimizer=optimizer,
        patience_epochs=0,
        step_on_epochs=True,
        num_epochs=args.num_epochs,
        warmup_epochs=args.lr_warmup_epochs,
        min_lr=1e-6,
    )

    # train linear classifier
    logger.info("Start training linear classifier")
    max_accuracy = 0
    for epoch in range(args.num_epochs):
        if args.distributed:
            sampler.set_epoch(epoch)
        train_loss, train_acc = train_epoch(
            vqvae, linear_classifier, train_dataloader, optimizer, device, scaler, args
        )
        val_loss, val_acc = evaluate(
            vqvae, linear_classifier, val_dataloader, device, args
        )

        if is_global_primary(args):
            if args.distributed:
                torch.save(
                    linear_classifier.module.state_dict(),
                    os.path.join(lp_model_dir, f"epoch_{epoch}.pth"),
                )
            else:
                torch.save(
                    linear_classifier.state_dict(),
                    os.path.join(lp_model_dir, f"epoch_{epoch}.pth"),
                )

        if val_acc > max_accuracy:
            max_accuracy = val_acc
            logger.info(f"Saving best model with accuracy {max_accuracy}")
            if args.distributed:
                torch.save(
                    linear_classifier.module.state_dict(),
                    os.path.join(lp_model_dir, "best.pth"),
                )
            else:
                torch.save(
                    linear_classifier.state_dict(),
                    os.path.join(lp_model_dir, "best.pth"),
                )

        if is_primary(args):
            logger.info(
                f"Epoch {epoch}: train_loss={train_loss}, train_acc={train_acc}, val_loss={val_loss}, val_acc={val_acc}"
            )
            logger.info(f"Best accuracy so far: {max_accuracy}")

        scheduler.step(epoch + 1)
    results = {"best_lp_accuracy": max_accuracy}

    # logger.info("Start training k-nn")

    if is_primary(args):
        logger.info("Finished training")
        logger.info(f"Best accuracy: {max_accuracy}")

        with open(os.path.join(output_dir, "linear_results.json"), "w") as f:
            json.dump(results, f)


if __name__ == "__main__":
    main()