File size: 13,383 Bytes
14ce5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Modified from:
#   taming-transformers:  https://github.com/CompVis/taming-transformers
#   muse-maskgit-pytorch: https://github.com/lucidrains/muse-maskgit-pytorch/blob/main/muse_maskgit_pytorch/vqgan_vae.py
import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np

from tokenizer.tokenizer_image.lpips import LPIPS
from tokenizer.tokenizer_image.discriminator_patchgan import (
    NLayerDiscriminator as PatchGANDiscriminator,
)
from tokenizer.tokenizer_image.discriminator_stylegan import (
    Discriminator as StyleGANDiscriminator,
)
from tokenizer.tokenizer_image.discriminator_dino import DinoDisc as DINODiscriminator
from tokenizer.tokenizer_image.diffaug import DiffAug
import wandb
import torch.distributed as tdist


def hinge_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.relu(1.0 - logits_real))
    loss_fake = torch.mean(F.relu(1.0 + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def vanilla_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.softplus(-logits_real))
    loss_fake = torch.mean(F.softplus(logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def non_saturating_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(
        F.binary_cross_entropy_with_logits(torch.ones_like(logits_real), logits_real)
    )
    loss_fake = torch.mean(
        F.binary_cross_entropy_with_logits(torch.zeros_like(logits_fake), logits_fake)
    )
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def hinge_gen_loss(logit_fake):
    return -torch.mean(logit_fake)


def non_saturating_gen_loss(logit_fake):
    return torch.mean(
        F.binary_cross_entropy_with_logits(torch.ones_like(logit_fake), logit_fake)
    )


def adopt_weight(weight, global_step, threshold=0, value=0.0):
    if global_step < threshold:
        weight = value
    return weight


def anneal_weight(
    weight,
    global_step,
    threshold=0,
    initial_value=0.3,
    final_value=0.1,
    anneal_steps=2000,
):
    if global_step < threshold:
        return initial_value
    elif global_step < threshold + anneal_steps:
        # Linearly interpolate between initial and final values within the anneal_steps
        decay_ratio = (global_step - threshold) / anneal_steps
        weight = initial_value - decay_ratio * (initial_value - final_value)
    else:
        # After annealing steps, set to final value
        weight = final_value
    return weight


class LeCAM_EMA(object):
    def __init__(self, init=0.0, decay=0.999):
        self.logits_real_ema = init
        self.logits_fake_ema = init
        self.decay = decay

    def update(self, logits_real, logits_fake):
        self.logits_real_ema = self.logits_real_ema * self.decay + torch.mean(
            logits_real
        ).item() * (1 - self.decay)
        self.logits_fake_ema = self.logits_fake_ema * self.decay + torch.mean(
            logits_fake
        ).item() * (1 - self.decay)


def lecam_reg(real_pred, fake_pred, lecam_ema):
    reg = torch.mean(F.relu(real_pred - lecam_ema.logits_fake_ema).pow(2)) + torch.mean(
        F.relu(lecam_ema.logits_real_ema - fake_pred).pow(2)
    )
    return reg


class VQLoss(nn.Module):
    def __init__(
        self,
        disc_start,
        disc_loss="hinge",
        disc_dim=64,
        disc_type="patchgan",
        image_size=256,
        disc_num_layers=3,
        disc_in_channels=3,
        disc_weight=1.0,
        disc_adaptive_weight=False,
        gen_adv_loss="hinge",
        reconstruction_loss="l2",
        reconstruction_weight=1.0,
        codebook_weight=1.0,
        perceptual_weight=1.0,
        lecam_loss_weight=None,
        norm_type="bn",
        aug_prob=1,
    ):
        super().__init__()
        # discriminator loss
        assert disc_type in ["patchgan", "stylegan", "dinodisc", "samdisc"]
        assert disc_loss in ["hinge", "vanilla", "non-saturating"]
        self.disc_type = disc_type
        if disc_type == "patchgan":
            self.discriminator = PatchGANDiscriminator(
                input_nc=disc_in_channels,
                n_layers=disc_num_layers,
                ndf=disc_dim,
            )
        elif disc_type == "stylegan":
            self.discriminator = StyleGANDiscriminator(
                input_nc=disc_in_channels,
                image_size=image_size,
            )
        elif disc_type == "dinodisc":
            self.discriminator = DINODiscriminator(
                norm_type=norm_type
            )  # default 224 otherwise crop
            self.daug = DiffAug(prob=aug_prob, cutout=0.2)
        elif disc_type == "samdisc":
            self.discriminator = SAMDiscriminator(norm_type=norm_type)
        else:
            raise ValueError(f"Unknown GAN discriminator type '{disc_type}'.")
        if disc_loss == "hinge":
            self.disc_loss = hinge_d_loss
        elif disc_loss == "vanilla":
            self.disc_loss = vanilla_d_loss
        elif disc_loss == "non-saturating":
            self.disc_loss = non_saturating_d_loss
        else:
            raise ValueError(f"Unknown GAN discriminator loss '{disc_loss}'.")
        self.discriminator_iter_start = disc_start
        self.disc_weight = disc_weight
        self.disc_adaptive_weight = disc_adaptive_weight

        assert gen_adv_loss in ["hinge", "non-saturating"]
        # gen_adv_loss
        if gen_adv_loss == "hinge":
            self.gen_adv_loss = hinge_gen_loss
        elif gen_adv_loss == "non-saturating":
            self.gen_adv_loss = non_saturating_gen_loss
        else:
            raise ValueError(f"Unknown GAN generator loss '{gen_adv_loss}'.")

        # perceptual loss
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = perceptual_weight

        # reconstruction loss
        if reconstruction_loss == "l1":
            self.rec_loss = F.l1_loss
        elif reconstruction_loss == "l2":
            self.rec_loss = F.mse_loss
        else:
            raise ValueError(f"Unknown rec loss '{reconstruction_loss}'.")
        self.rec_weight = reconstruction_weight

        # codebook loss
        self.codebook_weight = codebook_weight

        self.lecam_loss_weight = lecam_loss_weight
        if self.lecam_loss_weight is not None:
            self.lecam_ema = LeCAM_EMA()

        if tdist.get_rank() == 0:
            self.wandb_tracker = wandb.init(
                project="MSVQ",
            )

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer):
        nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
        g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        return d_weight.detach()

    def forward(
        self,
        codebook_loss,
        sem_loss,
        detail_loss,
        dependency_loss,
        inputs,
        reconstructions,
        optimizer_idx,
        global_step,
        last_layer=None,
        logger=None,
        log_every=100,
        fade_blur_schedule=0,
    ):
        # generator update
        if optimizer_idx == 0:
            # reconstruction loss
            rec_loss = self.rec_loss(inputs.contiguous(), reconstructions.contiguous())

            # perceptual loss
            p_loss = self.perceptual_loss(
                inputs.contiguous(), reconstructions.contiguous()
            )
            p_loss = torch.mean(p_loss)

            # discriminator loss
            if self.disc_type == "dinodisc":
                if fade_blur_schedule < 1e-6:
                    fade_blur_schedule = 0
                logits_fake = self.discriminator(
                    self.daug.aug(reconstructions.contiguous(), fade_blur_schedule)
                )
            else:
                logits_fake = self.discriminator(reconstructions.contiguous())
            generator_adv_loss = self.gen_adv_loss(logits_fake)

            if self.disc_adaptive_weight:
                null_loss = self.rec_weight * rec_loss + self.perceptual_weight * p_loss
                disc_adaptive_weight = self.calculate_adaptive_weight(
                    null_loss, generator_adv_loss, last_layer=last_layer
                )
            else:
                disc_adaptive_weight = 1
            disc_weight = adopt_weight(
                self.disc_weight, global_step, threshold=self.discriminator_iter_start
            )
            if sem_loss is None:
                sem_loss = 0
            if detail_loss is None:
                detail_loss = 0
            if dependency_loss is None:
                dependency_loss = 0
            loss = (
                self.rec_weight * rec_loss
                + self.perceptual_weight * p_loss
                + disc_adaptive_weight * disc_weight * generator_adv_loss
                + codebook_loss[0]
                + codebook_loss[1]
                + codebook_loss[2]
                + sem_loss
                + detail_loss
                + dependency_loss
            )

            if global_step % log_every == 0:
                rec_loss = self.rec_weight * rec_loss
                p_loss = self.perceptual_weight * p_loss
                generator_adv_loss = (
                    disc_adaptive_weight * disc_weight * generator_adv_loss
                )
                logger.info(
                    f"(Generator) rec_loss: {rec_loss:.4f}, perceptual_loss: {p_loss:.4f}, sem_loss: {sem_loss:.4f}, detail_loss: {detail_loss} "
                    f"dependency_loss: {dependency_loss} vq_loss: {codebook_loss[0]:.4f}, commit_loss: {codebook_loss[1]:.4f}, entropy_loss: {codebook_loss[2]:.4f}, "
                    f"codebook_usage: {codebook_loss[3]}, generator_adv_loss: {generator_adv_loss:.4f}, "
                    f"disc_adaptive_weight: {disc_adaptive_weight:.4f}, disc_weight: {disc_weight:.4f}"
                )
                if tdist.get_rank() == 0:
                    self.wandb_tracker.log(
                        {
                            "rec_loss": rec_loss,
                            "perceptual_loss": p_loss,
                            "sem_loss": sem_loss,
                            "detail_loss": detail_loss,
                            "dependency_loss": dependency_loss,
                            "vq_loss": codebook_loss[0],
                            "commit_loss": codebook_loss[1],
                            "entropy_loss": codebook_loss[2],
                            "codebook_usage": np.mean(codebook_loss[3]),
                            "generator_adv_loss": generator_adv_loss,
                            "disc_adaptive_weight": disc_adaptive_weight,
                            "disc_weight": disc_weight,
                        },
                        step=global_step,
                    )
            return loss

        # discriminator update
        if optimizer_idx == 1:

            if self.disc_type == "dinodisc":
                if fade_blur_schedule < 1e-6:
                    fade_blur_schedule = 0
                # add blur since disc is too strong
                logits_fake = self.discriminator(
                    self.daug.aug(
                        reconstructions.contiguous().detach(), fade_blur_schedule
                    )
                )
                logits_real = self.discriminator(
                    self.daug.aug(inputs.contiguous().detach(), fade_blur_schedule)
                )
            else:
                logits_fake = self.discriminator(reconstructions.contiguous().detach())
                logits_real = self.discriminator(inputs.contiguous().detach())

            disc_weight = adopt_weight(
                self.disc_weight, global_step, threshold=self.discriminator_iter_start
            )

            if self.lecam_loss_weight is not None:
                self.lecam_ema.update(logits_real, logits_fake)
                lecam_loss = lecam_reg(logits_real, logits_fake, self.lecam_ema)
                non_saturate_d_loss = self.disc_loss(logits_real, logits_fake)
                d_adversarial_loss = disc_weight * (
                    lecam_loss * self.lecam_loss_weight + non_saturate_d_loss
                )
            else:
                d_adversarial_loss = disc_weight * self.disc_loss(
                    logits_real, logits_fake
                )

            if global_step % log_every == 0:
                logits_real = logits_real.detach().mean()
                logits_fake = logits_fake.detach().mean()
                logger.info(
                    f"(Discriminator) "
                    f"discriminator_adv_loss: {d_adversarial_loss:.4f}, disc_weight: {disc_weight:.4f}, "
                    f"logits_real: {logits_real:.4f}, logits_fake: {logits_fake:.4f}"
                )
                if tdist.get_rank() == 0:
                    self.wandb_tracker.log(
                        {
                            "discriminator_adv_loss": d_adversarial_loss,
                            "disc_weight": disc_weight,
                            "logits_real": logits_real,
                            "logits_fake": logits_fake,
                        },
                        step=global_step,
                    )
            return d_adversarial_loss