File size: 34,787 Bytes
14ce5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 |
# Modified from:
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
import torch
# the first flag below was False when we tested this script but True makes A100 training a lot faster:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torchvision.utils import make_grid
from huggingface_hub import upload_folder
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
from tqdm import tqdm
import ruamel.yaml as yaml
import os
import time
import argparse
from glob import glob
from copy import deepcopy
import sys
import math
import numpy as np
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, "../.."))
sys.path.append(project_root)
from utils.logger import create_logger
from utils.distributed import init_distributed_mode
from utils.ema import update_ema, requires_grad
from dataset.augmentation import random_crop_arr, center_crop_arr
from dataset.build import build_dataset
from tokenizer.tokenizer_image.xqgan_model import VQ_models
from tokenizer.tokenizer_image.vq_loss import VQLoss
from timm.scheduler import create_scheduler_v2 as create_scheduler
from evaluator import Evaluator
import tensorflow.compat.v1 as tf
try:
import horovod.torch as hvd
except ImportError:
hvd = None
import warnings
warnings.filterwarnings("ignore")
import wandb
#################################################################################
# Training Loop #
#################################################################################
def get_random_ratio(
randomness_anneal_start, randomness_anneal_end, end_ratio, cur_step
):
if cur_step < randomness_anneal_start:
return 1.0
elif cur_step > randomness_anneal_end:
return end_ratio
else:
return (
1.0
- (cur_step - randomness_anneal_start)
/ (randomness_anneal_end - randomness_anneal_start)
* end_ratio
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-path", type=str, default="/mnt/localssd/ImageNet2012/train"
)
parser.add_argument(
"--data-face-path",
type=str,
default=None,
help="face datasets to improve vq model",
)
parser.add_argument(
"--cloud-save-path",
type=str,
default="output/debug",
help="please specify a cloud disk path, if not, local path",
)
parser.add_argument(
"--no-local-save",
action="store_true",
help="no save checkpoints to local path for limited disk volume",
)
parser.add_argument(
"--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16"
)
parser.add_argument(
"--vq-ckpt", type=str, default=None, help="ckpt path for resume training"
)
parser.add_argument(
"--finetune", action="store_true", help="finetune a pre-trained vq model"
)
parser.add_argument("--ema", action="store_true", help="whether using ema training")
parser.add_argument(
"--codebook-size",
type=int,
default=16384,
help="codebook size for vector quantization",
)
parser.add_argument(
"--codebook-embed-dim",
type=int,
default=8,
help="codebook dimension for vector quantization",
)
parser.add_argument(
"--codebook-l2-norm", action="store_true", default=True, help="l2 norm codebook"
)
parser.add_argument(
"--codebook-weight",
type=float,
default=1.0,
help="codebook loss weight for vector quantization",
)
parser.add_argument(
"--entropy-loss-ratio",
type=float,
default=0.0,
help="entropy loss ratio in codebook loss",
)
parser.add_argument(
"--commit-loss-beta",
type=float,
default=0.25,
help="commit loss beta in codebook loss",
)
parser.add_argument(
"--reconstruction-weight",
type=float,
default=1.0,
help="reconstruction loss weight of image pixel",
)
parser.add_argument(
"--reconstruction-loss",
type=str,
default="l2",
help="reconstruction loss type of image pixel",
)
parser.add_argument(
"--perceptual-weight",
type=float,
default=1.0,
help="perceptual loss weight of LPIPS",
)
parser.add_argument(
"--disc-weight",
type=float,
default=0.5,
help="discriminator loss weight for gan training",
)
parser.add_argument(
"--disc-epoch-start",
type=int,
default=0,
help="iteration to start discriminator training and loss",
)
parser.add_argument(
"--disc-start",
type=int,
default=0,
help="iteration to start discriminator training and loss",
) # autoset
parser.add_argument(
"--disc-type",
type=str,
choices=["patchgan", "stylegan"],
default="patchgan",
help="discriminator type",
)
parser.add_argument(
"--disc-loss",
type=str,
choices=["hinge", "vanilla", "non-saturating"],
default="hinge",
help="discriminator loss",
)
parser.add_argument(
"--gen-loss",
type=str,
choices=["hinge", "non-saturating"],
default="hinge",
help="generator loss for gan training",
)
parser.add_argument("--compile", action="store_true", default=False)
parser.add_argument("--dropout-p", type=float, default=0.0, help="dropout_p")
parser.add_argument("--results-dir", type=str, default="results_tokenizer_image")
parser.add_argument("--dataset", type=str, default="imagenet")
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--epochs", type=int, default=40)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--disc_lr", type=float, default=1e-4)
parser.add_argument("--max_grad_norm", type=float, default=0.0)
parser.add_argument("--lr_scheduler", type=str, default="none")
parser.add_argument(
"--weight-decay", type=float, default=0.0, help="Weight decay to use."
)
parser.add_argument(
"--disc-weight-decay", type=float, default=0.0, help="Weight decay to use."
)
parser.add_argument(
"--beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam optimizer.",
)
parser.add_argument(
"--beta2",
type=float,
default=0.95,
help="The beta2 parameter for the Adam optimizer.",
)
parser.add_argument(
"--max-grad-norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument("--global-batch-size", type=int, default=128)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=16)
parser.add_argument("--log-every", type=int, default=100)
parser.add_argument("--vis-every", type=int, default=5000)
parser.add_argument("--ckpt-every", type=int, default=10000)
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
parser.add_argument(
"--mixed-precision", type=str, default="bf16", choices=["none", "fp16", "bf16"]
)
parser.add_argument("--save_best", action="store_true", default=False)
parser.add_argument(
"--val_data_path", type=str, default="/mnt/localssd/ImageNet2012/val"
)
parser.add_argument("--sample_folder_dir", type=str, default="samples")
parser.add_argument(
"--reconstruction_folder_dir", type=str, default="reconstruction"
)
parser.add_argument(
"--v-patch-nums",
type=int,
default=[1, 2, 3, 4, 5, 6, 8, 10, 13, 16],
nargs="+",
help="number of patch numbers of each scale",
)
parser.add_argument("--enc_type", type=str, default="cnn")
parser.add_argument("--dec_type", type=str, default="cnn")
parser.add_argument("--semantic_guide", type=str, default="none")
parser.add_argument("--detail_guide", type=str, default="none")
parser.add_argument("--num_latent_tokens", type=int, default=256)
parser.add_argument(
"--encoder_model",
type=str,
default="vit_small_patch14_dinov2.lvd142m",
help="encoder model name",
)
parser.add_argument(
"--decoder_model",
type=str,
default="vit_small_patch14_dinov2.lvd142m",
help="encoder model name",
)
parser.add_argument("--disc_adaptive_weight", type=bool, default=False)
parser.add_argument("--abs_pos_embed", type=bool, default=False)
parser.add_argument("--product_quant", type=int, default=1)
parser.add_argument("--share_quant_resi", type=int, default=4)
parser.add_argument("--codebook_drop", type=float, default=0.0)
parser.add_argument("--half_sem", type=bool, default=False)
parser.add_argument("--start_drop", type=int, default=1)
parser.add_argument("--lecam_loss_weight", type=float, default=None)
parser.add_argument("--sem_loss_weight", type=float, default=0.1)
parser.add_argument("--detail_loss_weight", type=float, default=0.1)
parser.add_argument("--enc_tuning_method", type=str, default="full")
parser.add_argument("--dec_tuning_method", type=str, default="full")
parser.add_argument("--clip_norm", type=bool, default=False)
parser.add_argument("--sem_loss_scale", type=float, default=1.0)
parser.add_argument("--detail_loss_scale", type=float, default=1.0)
parser.add_argument("--config", type=str, default=None)
parser.add_argument("--norm_type", type=str, default="bn")
parser.add_argument("--aug_prob", type=float, default=1.0)
parser.add_argument("--aug_fade_steps", type=int, default=0)
parser.add_argument("--disc_reinit", type=int, default=0)
parser.add_argument("--debug_disc", type=bool, default=False)
parser.add_argument(
"--guide_type_1", type=str, default="class", choices=["patch", "class"]
)
parser.add_argument(
"--guide_type_2", type=str, default="class", choices=["patch", "class"]
)
parser.add_argument("--lfq", action="store_true", default=False, help="if use LFQ")
parser.add_argument("--end-ratio", type=float, default=0.5)
parser.add_argument("--anneal-start", type=int, default=200)
parser.add_argument("--anneal-end", type=int, default=200)
parser.add_argument("--alpha", type=float, default=0.0)
parser.add_argument("--beta", type=float, default=0.0)
parser.add_argument("--delta", type=int, default=100)
args = parser.parse_args()
if args.config is not None:
with open(args.config, "r", encoding="utf-8") as f:
file_yaml = yaml.YAML()
config_args = file_yaml.load(f)
parser.set_defaults(**config_args)
# re-parse command-line args to overwrite with any command-line inputs
args = parser.parse_args()
return args
def main(args):
"""
Trains a new model.
"""
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# Setup DDP:
init_distributed_mode(args)
assert (
args.global_batch_size % dist.get_world_size() == 0
), f"Batch size must be divisible by world size."
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
# Setup an experiment folder:
if rank == 0:
os.makedirs(
args.results_dir, exist_ok=True
) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.vq_model.replace("/", "-")
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder
checkpoint_dir = (
f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
)
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
cloud_results_dir = f"{args.cloud_save_path}"
cloud_checkpoint_dir = f"{cloud_results_dir}"
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
experiment_config = vars(args)
with open(
os.path.join(cloud_checkpoint_dir, "config.yaml"), "w", encoding="utf-8"
) as f:
# Use the round_trip_dump method to preserve the order and style
file_yaml = yaml.YAML()
file_yaml.dump(experiment_config, f)
else:
logger = create_logger(None)
# training args
logger.info(f"{args}")
# training env
logger.info(
f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}."
)
# Setup data:
transform = transforms.Compose(
[
transforms.Lambda(
lambda pil_image: random_crop_arr(pil_image, args.image_size)
),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True
),
]
)
dataset = build_dataset(args, transform=transform)
sampler = DistributedSampler(
dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=True,
seed=args.global_seed,
)
loader = DataLoader(
dataset,
batch_size=int(args.global_batch_size // dist.get_world_size()),
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
logger.info(f"Dataset contains {len(dataset):,} images ({args.data_path})")
if args.save_best:
transform = transforms.Compose(
[
transforms.Lambda(
lambda pil_image: center_crop_arr(pil_image, args.image_size)
),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True
),
]
)
args.data_path = args.val_data_path
val_dataset = build_dataset(args, transform=transform)
val_sampler = DistributedSampler(
val_dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=False,
seed=args.global_seed,
)
val_loader = DataLoader(
val_dataset,
batch_size=int(args.global_batch_size // dist.get_world_size()),
shuffle=False,
sampler=val_sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
if rank % torch.cuda.device_count() == 0:
os.makedirs(args.sample_folder_dir, exist_ok=True)
os.makedirs(args.reconstruction_folder_dir, exist_ok=True)
logger.info(f"Saving .png samples at {args.sample_folder_dir}")
logger.info(
f"Saving .png reconstruction at {args.reconstruction_folder_dir}"
)
num_update_steps_per_epoch = len(loader)
max_train_steps = args.epochs * num_update_steps_per_epoch
args.disc_start = args.disc_epoch_start * num_update_steps_per_epoch
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim,
commit_loss_beta=args.commit_loss_beta,
entropy_loss_ratio=args.entropy_loss_ratio,
dropout_p=args.dropout_p,
v_patch_nums=args.v_patch_nums,
enc_type=args.enc_type,
encoder_model=args.encoder_model,
dec_type=args.dec_type,
decoder_model=args.decoder_model,
semantic_guide=args.semantic_guide,
detail_guide=args.detail_guide,
num_latent_tokens=args.num_latent_tokens,
abs_pos_embed=args.abs_pos_embed,
share_quant_resi=args.share_quant_resi,
product_quant=args.product_quant,
codebook_drop=args.codebook_drop,
half_sem=args.half_sem,
start_drop=args.start_drop,
sem_loss_weight=args.sem_loss_weight,
detail_loss_weight=args.detail_loss_weight,
clip_norm=args.clip_norm,
sem_loss_scale=args.sem_loss_scale,
detail_loss_scale=args.detail_loss_scale,
guide_type_1=args.guide_type_1,
guide_type_2=args.guide_type_2,
lfq=args.lfq,
)
logger.info(
f"VQ Model Parameters: {sum(p.numel() for p in vq_model.parameters()):,}"
)
if args.ema:
ema = deepcopy(vq_model).to(
device
) # Create an EMA of the model for use after training
requires_grad(ema, False)
logger.info(
f"VQ Model EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}"
)
vq_model = vq_model.to(device)
vq_loss = VQLoss(
disc_start=args.disc_start,
disc_weight=args.disc_weight,
disc_type=args.disc_type,
disc_loss=args.disc_loss,
gen_adv_loss=args.gen_loss,
image_size=args.image_size,
perceptual_weight=args.perceptual_weight,
reconstruction_weight=args.reconstruction_weight,
reconstruction_loss=args.reconstruction_loss,
codebook_weight=args.codebook_weight,
lecam_loss_weight=args.lecam_loss_weight,
disc_adaptive_weight=args.disc_adaptive_weight,
norm_type=args.norm_type,
aug_prob=args.aug_prob,
).to(device)
logger.info(
f"Discriminator Parameters: {sum(p.numel() for p in vq_loss.discriminator.parameters()):,}"
)
args.lr = args.lr * args.global_batch_size / 128
args.disc_lr = args.disc_lr * args.global_batch_size / 128
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision == "fp16"))
scaler_disc = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision == "fp16"))
# Setup optimizer
optimizer = torch.optim.AdamW(
vq_model.parameters(),
lr=args.lr,
betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay,
)
optimizer_disc = torch.optim.AdamW(
vq_loss.discriminator.parameters(),
lr=args.disc_lr,
betas=(args.beta1, args.beta2),
weight_decay=args.disc_weight_decay,
)
# create lr scheduler
if args.lr_scheduler == "none":
vqvae_lr_scheduler = None
disc_lr_scheduler = None
else:
vqvae_lr_scheduler, _ = create_scheduler(
sched=args.lr_scheduler,
optimizer=optimizer,
patience_epochs=0,
step_on_epochs=True,
updates_per_epoch=num_update_steps_per_epoch,
num_epochs=args.epochs,
warmup_epochs=1,
min_lr=5e-5,
)
disc_lr_scheduler, _ = create_scheduler(
sched=args.lr_scheduler,
optimizer=optimizer_disc,
patience_epochs=0,
step_on_epochs=True,
updates_per_epoch=num_update_steps_per_epoch,
num_epochs=args.epochs - args.disc_epoch_start,
warmup_epochs=int(0.02 * args.epochs),
min_lr=5e-5,
)
logger.info(
f"num_update_steps_per_epoch {num_update_steps_per_epoch:,} max_train_steps ({max_train_steps})"
)
# Prepare models for training:
if args.vq_ckpt:
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
if args.ema:
ema.load_state_dict(checkpoint["ema"])
optimizer.load_state_dict(checkpoint["optimizer"])
if not args.debug_disc:
vq_loss.discriminator.load_state_dict(checkpoint["discriminator"])
optimizer_disc.load_state_dict(checkpoint["optimizer_disc"])
else:
num_step = checkpoint["optimizer_disc"]["state"][
next(iter(checkpoint["optimizer_disc"]["state"]))
]["step"]
for param_state in optimizer_disc.state.values():
param_state["step"] = num_step
if not args.finetune:
train_steps = (
checkpoint["steps"]
if "steps" in checkpoint
else int(args.vq_ckpt.split("/")[-1].split(".")[0])
)
start_epoch = (
int(train_steps / int(len(dataset) / args.global_batch_size)) + 1
)
train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size))
else:
train_steps = 0
start_epoch = 0
del checkpoint
vq_model.finetune(args.enc_tuning_method, args.dec_tuning_method)
logger.info(f"Resume training from checkpoint: {args.vq_ckpt}")
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
else:
train_steps = 0
start_epoch = 0
if args.ema:
update_ema(
ema, vq_model, decay=0
) # Ensure EMA is initialized with synced weights
if args.compile:
logger.info("compiling the model... (may take several minutes)")
vq_model = torch.compile(vq_model, mode="max-autotune") # requires PyTorch 2.0
vq_model = DDP(vq_model.to(device), device_ids=[args.gpu])
vq_model.train()
if args.ema:
ema.eval() # EMA model should always be in eval mode
vq_loss = DDP(vq_loss.to(device), device_ids=[args.gpu])
vq_loss.train()
ptdtype = {"none": torch.float32, "bf16": torch.bfloat16, "fp16": torch.float16}[
args.mixed_precision
]
# Variables for monitoring/logging purposes:
log_steps = 0
running_loss = 0
start_time = time.time()
curr_fid = None
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(start_epoch, args.epochs):
ratio = get_random_ratio(
args.anneal_start, args.anneal_end, args.end_ratio, epoch
)
delta = int(ratio * args.delta)
alpha = ratio * args.alpha
beta = args.beta
sampler.set_epoch(epoch)
logger.info(f"Beginning epoch {epoch}...")
if args.disc_reinit != 0:
if epoch % args.disc_reinit == 0:
vq_loss.module.discriminator.reinit()
for x, y in loader:
imgs = x.to(device, non_blocking=True)
if args.aug_fade_steps >= 0:
fade_blur_schedule = (
0
if train_steps < args.disc_start
else min(
1.0, (train_steps - args.disc_start) / (args.aug_fade_steps + 1)
)
)
fade_blur_schedule = 1 - fade_blur_schedule
else:
fade_blur_schedule = 0
# generator training
optimizer.zero_grad()
with torch.cuda.amp.autocast(dtype=ptdtype):
recons_imgs, codebook_loss, sem_loss, detail_loss, dependency_loss = (
vq_model(imgs, epoch, alpha, beta, delta)
)
loss_gen = vq_loss(
codebook_loss,
sem_loss,
detail_loss,
dependency_loss,
imgs,
recons_imgs,
optimizer_idx=0,
global_step=train_steps + 1,
last_layer=vq_model.module.decoder.last_layer,
logger=logger,
log_every=args.log_every,
fade_blur_schedule=fade_blur_schedule,
)
scaler.scale(loss_gen).backward()
if args.max_grad_norm != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
vq_model.parameters(), args.max_grad_norm
)
scaler.step(optimizer)
scaler.update()
if args.ema:
update_ema(
ema, vq_model.module._orig_mod if args.compile else vq_model.module
)
# discriminator training
optimizer_disc.zero_grad()
with torch.cuda.amp.autocast(dtype=ptdtype):
loss_disc = vq_loss(
codebook_loss,
sem_loss,
detail_loss,
dependency_loss,
imgs,
recons_imgs,
optimizer_idx=1,
global_step=train_steps + 1,
logger=logger,
log_every=args.log_every,
fade_blur_schedule=fade_blur_schedule,
)
scaler_disc.scale(loss_disc).backward()
if args.max_grad_norm != 0.0:
scaler_disc.unscale_(optimizer_disc)
torch.nn.utils.clip_grad_norm_(
vq_loss.module.discriminator.parameters(), args.max_grad_norm
)
scaler_disc.step(optimizer_disc)
scaler_disc.update()
# # Log loss values:
running_loss += loss_gen.item() + loss_disc.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time.time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
logger.info(
f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}"
)
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time.time()
if dist.get_rank() == 0:
vq_loss.module.wandb_tracker.log(
{"lr": optimizer.param_groups[0]["lr"], "train_loss": avg_loss},
step=train_steps,
)
# show images and recon images
if train_steps % args.vis_every == 0:
with torch.no_grad():
recons_with_scale = (
vq_model.module.img_to_reconstructed_img(
imgs[:4], last_one=False
)
)
image = torch.cat(recons_with_scale + [imgs[:4]], dim=0)
image = torch.clamp(image, min=-1, max=1)
image = make_grid(
(image + 1) / 2, nrow=4, padding=0, pad_value=1.0
)
image = image.permute(1, 2, 0).mul_(255).cpu().numpy()
image = Image.fromarray(image.astype(np.uint8))
vq_loss.module.wandb_tracker.log(
{"recon_images": [wandb.Image(image)]}, step=train_steps
)
# Save checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if args.save_best:
vq_model.eval()
total = 0
samples = []
gt = []
for x, _ in tqdm(
val_loader,
desc=f"evaluation for step {train_steps:07d}",
disable=not rank == 0,
):
with torch.no_grad():
x = x.to(device, non_blocking=True)
sample = vq_model.module.img_to_reconstructed_img(x)
sample = (
torch.clamp(127.5 * sample + 128.0, 0, 255)
.permute(0, 2, 3, 1)
.to(torch.uint8)
.contiguous()
)
x = (
torch.clamp(127.5 * x + 128.0, 0, 255)
.permute(0, 2, 3, 1)
.to(torch.uint8)
.contiguous()
)
sample = torch.cat(dist.nn.all_gather(sample), dim=0)
x = torch.cat(dist.nn.all_gather(x), dim=0)
samples.append(sample.to("cpu", dtype=torch.uint8).numpy())
gt.append(x.to("cpu", dtype=torch.uint8).numpy())
total += sample.shape[0]
vq_model.train()
logger.info(f"Ealuate total {total} files.")
dist.barrier()
if rank == 0:
samples = np.concatenate(samples, axis=0)
gt = np.concatenate(gt, axis=0)
config = tf.ConfigProto(
allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph
)
config.gpu_options.allow_growth = True
evaluator = Evaluator(tf.Session(config=config), batch_size=32)
evaluator.warmup()
logger.info("computing reference batch activations...")
ref_acts = evaluator.read_activations(gt)
logger.info("computing/reading reference batch statistics...")
ref_stats, _ = evaluator.read_statistics(gt, ref_acts)
logger.info("computing sample batch activations...")
sample_acts = evaluator.read_activations(samples)
logger.info("computing/reading sample batch statistics...")
sample_stats, _ = evaluator.read_statistics(
samples, sample_acts
)
FID = sample_stats.frechet_distance(ref_stats)
logger.info(f"traing step: {train_steps:07d}, FID {FID:07f}")
# eval code, delete prev if not the best
if curr_fid == None:
curr_fid = [FID, train_steps]
elif FID <= curr_fid[0]:
# os.remove(f"{cloud_checkpoint_dir}/{curr_fid[1]:07d}.pt")
curr_fid = [FID, train_steps]
vq_loss.module.wandb_tracker.log(
{"eval FID": FID}, step=train_steps
)
dist.barrier()
if rank == 0:
if args.compile:
model_weight = vq_model.module._orig_mod.state_dict()
else:
model_weight = vq_model.module.state_dict()
checkpoint = {
"model": model_weight,
"optimizer": optimizer.state_dict(),
"discriminator": vq_loss.module.discriminator.state_dict(),
"optimizer_disc": optimizer_disc.state_dict(),
"steps": train_steps,
"args": args,
}
if args.ema:
checkpoint["ema"] = ema.state_dict()
if not args.no_local_save:
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
# cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
# torch.save(checkpoint, cloud_checkpoint_path)
# logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
if args.save_best:
last_checkpoint_path = f"{args.cloud_save_path}/last_ckpt.pt"
if os.path.exists(last_checkpoint_path):
os.remove(last_checkpoint_path)
else:
os.makedirs(f"{args.cloud_save_path}", exist_ok=True)
torch.save(checkpoint, last_checkpoint_path)
logger.info(
f"Saved checkpoint in cloud to {last_checkpoint_path}"
)
if curr_fid[1] == train_steps:
best_checkpoint_path = (
f"{args.cloud_save_path}/best_ckpt.pt"
)
torch.save(checkpoint, best_checkpoint_path)
logger.info(
f"Saved checkpoint in cloud to {best_checkpoint_path}"
)
dist.barrier()
if vqvae_lr_scheduler is not None:
vqvae_lr_scheduler.step(epoch + 1)
if disc_lr_scheduler is not None and epoch >= args.disc_epoch_start:
disc_lr_scheduler.step(epoch + 1 - args.disc_epoch_start)
vq_model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
logger.info("Done!")
dist.destroy_process_group()
if __name__ == "__main__":
args = parse_args()
main(args)
|