|
import os |
|
import spaces |
|
import subprocess |
|
import sys |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
from src.data_processing import pil_to_tensor, tensor_to_pil |
|
from PIL import Image |
|
from src.model_processing import get_model |
|
from huggingface_hub import snapshot_download |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Running on: {device}") |
|
|
|
MODEL_DIR = "./VTBench_models" |
|
if not os.path.exists(MODEL_DIR): |
|
print("Downloading VTBench_models from Hugging Face...") |
|
snapshot_download( |
|
repo_id="huaweilin/VTBench_models", |
|
local_dir=MODEL_DIR, |
|
local_dir_use_symlinks=False |
|
) |
|
print("Download complete.") |
|
|
|
example_image_paths = [f"assets/app_examples/{i}.png" for i in range(0, 5)] |
|
|
|
model_name_mapping = { |
|
"SD3.5L": "SD3.5L", |
|
"chameleon": "Chameleon", |
|
|
|
|
|
|
|
"janus_pro_1b": "Janus Pro 1B/7B", |
|
"llamagen-ds8": "LlamaGen ds8", |
|
"llamagen-ds16": "LlamaGen ds16", |
|
"llamagen-ds16-t2i": "LlamaGen ds16 T2I", |
|
"maskbit_16bit": "MaskBiT 16bit", |
|
"maskbit_18bit": "MaskBiT 18bit", |
|
"open_magvit2": "OpenMagViT", |
|
"titok_b64": "Titok-b64", |
|
"titok_bl64": "Titok-bl64", |
|
"titok_s128": "Titok-s128", |
|
"titok_bl128": "Titok-bl128", |
|
"titok_l32": "Titok-l32", |
|
"titok_sl256": "Titok-sl256", |
|
"var_256": "VAR-256", |
|
"var_512": "VAR-512", |
|
"FLUX.1-dev": "FLUX.1-dev", |
|
"infinity_d32": "Infinity-d32", |
|
"infinity_d64": "Infinity-d64", |
|
"bsqvit": "BSQ-VIT", |
|
} |
|
|
|
def load_model(model_name): |
|
model, data_params = get_model(MODEL_DIR, model_name) |
|
model = model.to(device) |
|
model.eval() |
|
return model, data_params |
|
|
|
model_dict = { |
|
model_name: load_model(model_name) |
|
for model_name in model_name_mapping |
|
} |
|
|
|
placeholder_image = Image.new("RGBA", (512, 512), (0, 0, 0, 0)) |
|
|
|
@spaces.GPU |
|
def process_selected_models(uploaded_image, selected_models): |
|
results = [] |
|
for model_name in model_name_mapping: |
|
if uploaded_image is None: |
|
results.append(gr.update(value=placeholder_image, label=f"{model_name_mapping[model_name]} (No input)")) |
|
elif model_name in selected_models: |
|
try: |
|
model, data_params = model_dict[model_name] |
|
pixel_values = pil_to_tensor(uploaded_image, **data_params).unsqueeze(0).to(device) |
|
output = model(pixel_values)[0] |
|
reconstructed_image = tensor_to_pil(output[0].cpu(), **data_params) |
|
results.append(gr.update(value=reconstructed_image, label=model_name_mapping[model_name])) |
|
except Exception as e: |
|
print(f"Error in model {model_name}: {e}") |
|
results.append(gr.update(value=placeholder_image, label=f"{model_name_mapping[model_name]} (Error)")) |
|
else: |
|
results.append(gr.update(value=placeholder_image, label=f"{model_name_mapping[model_name]} (Not selected)")) |
|
return results |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## VTBench") |
|
|
|
gr.Markdown("---") |
|
|
|
image_input = gr.Image( |
|
type="pil", |
|
label="Upload an image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Markdown("### Click on an example image to use it as input:") |
|
example_rows = [example_image_paths[i:i+5] for i in range(0, len(example_image_paths), 5)] |
|
for row in example_rows: |
|
with gr.Row(): |
|
for path in row: |
|
ex_img = gr.Image( |
|
value=path, |
|
show_label=False, |
|
interactive=True, |
|
width=256, |
|
height=256, |
|
) |
|
|
|
def make_loader(p=path): |
|
def load_img(): |
|
return Image.open(p) |
|
return load_img |
|
|
|
ex_img.select(fn=make_loader(), outputs=image_input) |
|
|
|
gr.Markdown("---") |
|
|
|
gr.Markdown("⚠️ **The more models you select, the longer the processing time will be.**") |
|
model_selector = gr.CheckboxGroup( |
|
choices=list(model_name_mapping.keys()), |
|
label="Select models to run", |
|
value=["SD3.5L", "chameleon", "janus_pro_1b"], |
|
interactive=True, |
|
) |
|
run_button = gr.Button("Start Processing") |
|
|
|
image_outputs = [] |
|
model_items = list(model_name_mapping.items()) |
|
|
|
n_columns = 5 |
|
output_rows = [model_items[i:i+n_columns] for i in range(0, len(model_items), n_columns)] |
|
|
|
with gr.Column(): |
|
for row in output_rows: |
|
with gr.Row(): |
|
for model_name, display_name in row: |
|
out_img = gr.Image( |
|
label=f"{display_name} (Not run)", |
|
value=placeholder_image, |
|
width=512, |
|
height=512, |
|
) |
|
image_outputs.append(out_img) |
|
|
|
run_button.click( |
|
fn=process_selected_models, |
|
inputs=[image_input, model_selector], |
|
outputs=image_outputs |
|
) |
|
|
|
demo.launch() |
|
|