|
from einops import rearrange, reduce |
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
|
|
|
|
class DifferentiableEntropyFunction(Function): |
|
@staticmethod |
|
def forward(ctx, zq, basis, K, eps): |
|
zb = (zq + 1) / 2 |
|
zi = ((zb * basis).sum(-1)).to(torch.int64) |
|
cnt = torch.scatter_reduce(torch.zeros(2**K, device=zq.device, dtype=zq.dtype), |
|
0, |
|
zi.flatten(), |
|
torch.ones_like(zi.flatten()).to(zq.dtype), |
|
'sum') |
|
prob = (cnt + eps) / (cnt + eps).sum() |
|
H = -(prob * torch.log(prob)).sum() |
|
ctx.save_for_backward(zq, zi, prob) |
|
ctx.K = K |
|
return H |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
zq, zi, prob= ctx.saved_tensors |
|
grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K |
|
reord_grad = grad_array[zi.flatten()].reshape(zi.shape) |
|
grad_input = reord_grad.unsqueeze(-1) * zq |
|
return grad_input, None, None, None, None |
|
|
|
|
|
def codebook_entropy(zq, basis, K, eps=1e-4): |
|
return DifferentiableEntropyFunction.apply(zq, basis, K, eps) |
|
|
|
|
|
class BinarySphericalQuantizer(nn.Module): |
|
def __init__(self, embed_dim, beta, gamma0, gamma, zeta, |
|
input_format='bchw', |
|
soft_entropy=True, group_size=9, |
|
persample_entropy_compute='group', |
|
cb_entropy_compute='group', |
|
l2_norm=False, |
|
inv_temperature=1): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.beta = beta |
|
self.gamma0 = gamma0 |
|
self.gamma = gamma |
|
self.zeta = zeta |
|
self.input_format = input_format |
|
assert self.embed_dim % group_size == 0, "embed_dim must be divisible by group_size" |
|
self.num_groups = self.embed_dim // group_size |
|
self.group_size = group_size |
|
assert persample_entropy_compute in ['group', 'analytical'], "persample_entropy_compute must be either 'group' or 'analytical'" |
|
assert cb_entropy_compute in ['group', 'nce'], "cb_entropy_compute must be either 'group' or 'nce'" |
|
self.persample_entropy_compute = persample_entropy_compute |
|
self.cb_entropy_compute = cb_entropy_compute |
|
self.l2_norm = l2_norm |
|
self.inv_temperature = inv_temperature |
|
|
|
self.register_buffer('basis', 2 ** torch.arange(embed_dim - 1, -1, -1)) |
|
self.register_buffer('group_basis', 2 ** torch.arange(group_size - 1, -1, -1)) |
|
|
|
self.num_dimensions = 2 ** embed_dim |
|
self.bits_per_index = embed_dim |
|
|
|
|
|
|
|
group_codes = torch.arange(2 ** self.group_size) |
|
group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:] |
|
self.register_buffer('group_codebook', group_codebook, persistent=False) |
|
|
|
self.soft_entropy = soft_entropy |
|
|
|
def quantize(self, z): |
|
assert z.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}" |
|
|
|
zhat = torch.where(z > 0, |
|
torch.tensor(1, dtype=z.dtype, device=z.device), |
|
torch.tensor(-1, dtype=z.dtype, device=z.device)) |
|
return z + (zhat - z).detach() |
|
|
|
def forward(self, z): |
|
if self.input_format == 'bchw': |
|
z = rearrange(z, 'b c h w -> b h w c') |
|
zq = self.quantize(z) |
|
|
|
indices = self.codes_to_indexes(zq.detach()) |
|
group_indices = self.codes_to_group_indexes(zq.detach()) |
|
if not self.training: |
|
used_codes = torch.unique(indices, return_counts=False) |
|
else: |
|
used_codes = None |
|
|
|
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1. |
|
|
|
if self.soft_entropy: |
|
persample_entropy, cb_entropy, avg_prob = self.soft_entropy_loss(z) |
|
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy |
|
else: |
|
zb_by_sample= ((zq + 1)/2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32) |
|
persample_entropy = self.get_hard_per_sample_entropy(zb_by_sample) |
|
cb_entropy = codebook_entropy(zq, self.basis, self.embed_dim) |
|
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy |
|
|
|
zq = zq * q_scale |
|
|
|
|
|
commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1)) |
|
|
|
if self.input_format == 'bchw': |
|
zq = rearrange(zq, 'b h w c -> b c h w') |
|
|
|
return ( |
|
zq, |
|
commit_loss + self.zeta * entropy_penalty / self.inv_temperature, |
|
{"H": cb_entropy, "used_codes": used_codes, "indices": indices, "group_indices": group_indices, |
|
"avg_prob": avg_prob} |
|
) |
|
|
|
def soft_entropy_loss(self, z): |
|
|
|
|
|
group_code_book = self.group_codebook / (self.embed_dim ** 0.5 if self.l2_norm else 1) |
|
divided_z = rearrange(z, '... (g c) -> ... g c', c=self.group_size) |
|
|
|
|
|
distance = - 2 * torch.einsum('... g c, d c ->... g d', divided_z, group_code_book) |
|
prob = (-distance * self.inv_temperature).softmax(dim = -1) |
|
if self.persample_entropy_compute == 'analytical': |
|
if self.l2_norm: |
|
p = torch.sigmoid(-4 * z / (self.embed_dim ** 0.5) * self.inv_temperature) |
|
else: |
|
p = torch.sigmoid(-4 * z * self.inv_temperature) |
|
prob = torch.stack([p, 1-p], dim=-1) |
|
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean() |
|
else: |
|
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean() |
|
|
|
|
|
avg_prob = reduce(prob, '... g d ->g d', 'mean') |
|
codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False) |
|
|
|
|
|
return per_sample_entropy, codebook_entropy.sum(), avg_prob |
|
|
|
def get_hard_per_sample_entropy(self, zb_by_sample): |
|
probs_per_dim = zb_by_sample.sum(1) / zb_by_sample.shape[1] |
|
persample_entropy = - probs_per_dim * torch.log(probs_per_dim + 1e-8) - (1 - probs_per_dim) * torch.log(1 - probs_per_dim + 1e-8) |
|
persample_entropy = persample_entropy.sum(-1) |
|
return persample_entropy.mean() |
|
|
|
def codes_to_indexes(self, zhat): |
|
"""Converts a `code` to an index in the codebook. |
|
Args: |
|
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1} |
|
""" |
|
assert zhat.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}" |
|
return ((zhat + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64) |
|
|
|
def codes_to_group_indexes(self, zhat): |
|
"""Converts a `code` to a list of indexes (in groups) in the codebook. |
|
Args: |
|
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1} |
|
""" |
|
zhat_in_group = rearrange(zhat, 'b ... (g c) -> b ... g c', c=self.group_size) |
|
return ((zhat_in_group + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64) |
|
|
|
def indexes_to_codes(self, indices): |
|
"""Inverse of `indexes_to_codes`.""" |
|
indices = indices.unsqueeze(-1) |
|
codes_non_centered = torch.remainder( |
|
torch.floor_divide(indices, self.basis), 2 |
|
) |
|
return codes_non_centered * 2 - 1 |
|
|
|
def group_indexes_to_codes(self, group_indices): |
|
"""Inverse of `group_indexes_to_codes`.""" |
|
group_indices = group_indices.unsqueeze(-1) |
|
codes_non_centered = torch.remainder( |
|
torch.floor_divide(group_indices, self.group_basis), 2 |
|
) |
|
codes_non_centered = rearrange(codes_non_centered, 'b ... g c -> b ... (g c)') |
|
return codes_non_centered * 2 - 1 |
|
|
|
def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True): |
|
if normalize: |
|
probs = (count + eps) / (count + eps).sum(dim=dim, keepdim =True) |
|
else: |
|
probs = count |
|
H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim) |
|
return H |
|
|
|
def get_group_codebook_entry(self, group_indices): |
|
z_q = self.group_indexes_to_codes(group_indices) |
|
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1. |
|
z_q = z_q * q_scale |
|
if self.input_format == 'bchw': |
|
h, w = int(z_q.shape[1] ** 0.5) |
|
assert h * w == z_q.shape[1], 'Invalid sequence length' |
|
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h) |
|
return z_q |
|
|
|
def get_codebook_entry(self, indices): |
|
z_q = self.indexes_to_codes(indices) |
|
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1. |
|
z_q = z_q * q_scale |
|
if self.input_format == 'bchw': |
|
h, w = int(z_q.shape[1] ** 0.5) |
|
assert h * w == z_q.shape[1], 'Invalid sequence length' |
|
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h) |
|
return z_q |
|
|
|
|
|
if __name__ == "__main__": |
|
K = 8 |
|
|
|
zq = torch.zeros((4, 32, K), dtype=torch.bfloat16, device='cuda') * 2 - 1 |
|
basis = (2 ** torch.arange(K - 1, -1, -1)).to(torch.bfloat16).cuda() |
|
zq.requires_grad = True |
|
h = codebook_entropy(zq, basis, K) |
|
h.backward() |
|
print(zq.grad, zq) |
|
|