huaweilin's picture
update
14ce5a9
import torch
import warnings
#----------------------------------------------------------------------------
# Symbolic assert.
try:
symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
except AttributeError:
symbolic_assert = torch.Assert # 1.7.0
#----------------------------------------------------------------------------
# Context manager to suppress known warnings in torch.jit.trace().
class suppress_tracer_warnings(warnings.catch_warnings):
def __enter__(self):
super().__enter__()
warnings.simplefilter('ignore', category=torch.jit.TracerWarning)
return self
#----------------------------------------------------------------------------
# Assert that the shape of a tensor matches the given list of integers.
# None indicates that the size of a dimension is allowed to vary.
# Performs symbolic assertion when used in torch.jit.trace().
def assert_shape(tensor, ref_shape):
if tensor.ndim != len(ref_shape):
raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
if ref_size is None:
pass
elif isinstance(ref_size, torch.Tensor):
with suppress_tracer_warnings(): # as_tensor results are registered as constants
symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
elif isinstance(size, torch.Tensor):
with suppress_tracer_warnings(): # as_tensor results are registered as constants
symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
elif size != ref_size:
raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')