VTBench / src /vqvaes /open_magvit2 /open_magvit2.py
huaweilin's picture
update
14ce5a9
import torch
import torch.nn.functional as F
import lightning as L
from contextlib import contextmanager
from collections import OrderedDict
from .improved_model import Encoder, Decoder
from .lookup_free_quantize import LFQ
from .ema import LitEma
class VQModel(L.LightningModule):
def __init__(
self,
ddconfig,
lossconfig,
## Quantize Related
n_embed,
embed_dim,
sample_minimization_weight,
batch_maximization_weight,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
learning_rate=None,
resume_lr=None,
### scheduler config
warmup_epochs=1.0, # warmup epochs
scheduler_type="linear-warmup_cosine-decay",
min_learning_rate=0,
use_ema=False,
token_factorization=False,
stage=None,
lr_drop_epoch=None,
lr_drop_rate=0.1,
factorized_bits=[9, 9],
):
super().__init__()
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.quantize = LFQ(
dim=embed_dim,
codebook_size=n_embed,
sample_minimization_weight=sample_minimization_weight,
batch_maximization_weight=batch_maximization_weight,
token_factorization=token_factorization,
factorized_bits=factorized_bits,
)
if colorize_nlabels is not None:
assert type(colorize_nlabels) == int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.use_ema = use_ema
if (
self.use_ema and stage is None
): # no need to construct EMA when training Transformer
self.model_ema = LitEma(self)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, stage=stage)
self.resume_lr = resume_lr
self.learning_rate = learning_rate
self.lr_drop_epoch = lr_drop_epoch
self.lr_drop_rate = lr_drop_rate
self.scheduler_type = scheduler_type
self.warmup_epochs = warmup_epochs
self.min_learning_rate = min_learning_rate
self.automatic_optimization = False
self.strict_loading = False
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def load_state_dict(self, *args, strict=False):
"""
Resume not strict loading
"""
return super().load_state_dict(*args, strict=strict)
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
"""
filter out the non-used keys
"""
return {
k: v
for k, v in super()
.state_dict(*args, destination, prefix, keep_vars)
.items()
if (
"inception_model" not in k
and "lpips_vgg" not in k
and "lpips_alex" not in k
)
}
def init_from_ckpt(self, path, ignore_keys=list(), stage="transformer"):
sd = torch.load(path, map_location="cpu")["state_dict"]
ema_mapping = {}
new_params = OrderedDict()
if stage == "transformer": ### directly use ema encoder and decoder parameter
if self.use_ema:
for k, v in sd.items():
if "encoder" in k:
if "model_ema" in k:
k = k.replace(
"model_ema.", ""
) # load EMA Encoder or Decoder
new_k = ema_mapping[k]
new_params[new_k] = v
s_name = k.replace(".", "")
ema_mapping.update({s_name: k})
continue
if "decoder" in k:
if "model_ema" in k:
k = k.replace(
"model_ema.", ""
) # load EMA Encoder or Decoder
new_k = ema_mapping[k]
new_params[new_k] = v
s_name = k.replace(".", "")
ema_mapping.update({s_name: k})
continue
else: # also only load the Generator
for k, v in sd.items():
if "encoder" in k:
new_params[k] = v
elif "decoder" in k:
new_params[k] = v
missing_keys, unexpected_keys = self.load_state_dict(
new_params, strict=False
) # first stage
print(f"Restored from {path}")
def encode(self, x):
h = self.encoder(x)
(quant, emb_loss, info), loss_breakdown = self.quantize(
h, return_loss_breakdown=True
)
return quant, emb_loss, info, loss_breakdown
def decode(self, quant):
dec = self.decoder(quant)
return dec
def decode_code(self, code_b):
quant_b = self.quantize.embed_code(code_b)
dec = self.decode(quant_b)
return dec
def forward(self, input):
quant, diff, img_toks, loss_break = self.encode(input)
pixels = self.decode(quant)
return pixels, img_toks, quant
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).contiguous()
return x.float()
def get_last_layer(self):
return self.decoder.conv_out.weight
def log_images(self, batch, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
xrec, _ = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["inputs"] = x
log["reconstructions"] = xrec
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
return x