|
import torch |
|
import torch.nn.functional as F |
|
import lightning as L |
|
|
|
from contextlib import contextmanager |
|
from collections import OrderedDict |
|
|
|
from .improved_model import Encoder, Decoder |
|
from .lookup_free_quantize import LFQ |
|
from .ema import LitEma |
|
|
|
|
|
class VQModel(L.LightningModule): |
|
def __init__( |
|
self, |
|
ddconfig, |
|
lossconfig, |
|
|
|
n_embed, |
|
embed_dim, |
|
sample_minimization_weight, |
|
batch_maximization_weight, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
learning_rate=None, |
|
resume_lr=None, |
|
|
|
warmup_epochs=1.0, |
|
scheduler_type="linear-warmup_cosine-decay", |
|
min_learning_rate=0, |
|
use_ema=False, |
|
token_factorization=False, |
|
stage=None, |
|
lr_drop_epoch=None, |
|
lr_drop_rate=0.1, |
|
factorized_bits=[9, 9], |
|
): |
|
super().__init__() |
|
self.image_key = image_key |
|
self.encoder = Encoder(**ddconfig) |
|
self.decoder = Decoder(**ddconfig) |
|
self.quantize = LFQ( |
|
dim=embed_dim, |
|
codebook_size=n_embed, |
|
sample_minimization_weight=sample_minimization_weight, |
|
batch_maximization_weight=batch_maximization_weight, |
|
token_factorization=token_factorization, |
|
factorized_bits=factorized_bits, |
|
) |
|
|
|
if colorize_nlabels is not None: |
|
assert type(colorize_nlabels) == int |
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
if monitor is not None: |
|
self.monitor = monitor |
|
|
|
self.use_ema = use_ema |
|
if ( |
|
self.use_ema and stage is None |
|
): |
|
self.model_ema = LitEma(self) |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, stage=stage) |
|
self.resume_lr = resume_lr |
|
self.learning_rate = learning_rate |
|
self.lr_drop_epoch = lr_drop_epoch |
|
self.lr_drop_rate = lr_drop_rate |
|
self.scheduler_type = scheduler_type |
|
self.warmup_epochs = warmup_epochs |
|
self.min_learning_rate = min_learning_rate |
|
self.automatic_optimization = False |
|
|
|
self.strict_loading = False |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.parameters()) |
|
self.model_ema.copy_to(self) |
|
if context is not None: |
|
print(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.parameters()) |
|
if context is not None: |
|
print(f"{context}: Restored training weights") |
|
|
|
def load_state_dict(self, *args, strict=False): |
|
""" |
|
Resume not strict loading |
|
""" |
|
return super().load_state_dict(*args, strict=strict) |
|
|
|
def state_dict(self, *args, destination=None, prefix="", keep_vars=False): |
|
""" |
|
filter out the non-used keys |
|
""" |
|
return { |
|
k: v |
|
for k, v in super() |
|
.state_dict(*args, destination, prefix, keep_vars) |
|
.items() |
|
if ( |
|
"inception_model" not in k |
|
and "lpips_vgg" not in k |
|
and "lpips_alex" not in k |
|
) |
|
} |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list(), stage="transformer"): |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
ema_mapping = {} |
|
new_params = OrderedDict() |
|
if stage == "transformer": |
|
if self.use_ema: |
|
for k, v in sd.items(): |
|
if "encoder" in k: |
|
if "model_ema" in k: |
|
k = k.replace( |
|
"model_ema.", "" |
|
) |
|
new_k = ema_mapping[k] |
|
new_params[new_k] = v |
|
s_name = k.replace(".", "") |
|
ema_mapping.update({s_name: k}) |
|
continue |
|
if "decoder" in k: |
|
if "model_ema" in k: |
|
k = k.replace( |
|
"model_ema.", "" |
|
) |
|
new_k = ema_mapping[k] |
|
new_params[new_k] = v |
|
s_name = k.replace(".", "") |
|
ema_mapping.update({s_name: k}) |
|
continue |
|
else: |
|
for k, v in sd.items(): |
|
if "encoder" in k: |
|
new_params[k] = v |
|
elif "decoder" in k: |
|
new_params[k] = v |
|
missing_keys, unexpected_keys = self.load_state_dict( |
|
new_params, strict=False |
|
) |
|
print(f"Restored from {path}") |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
(quant, emb_loss, info), loss_breakdown = self.quantize( |
|
h, return_loss_breakdown=True |
|
) |
|
return quant, emb_loss, info, loss_breakdown |
|
|
|
def decode(self, quant): |
|
dec = self.decoder(quant) |
|
return dec |
|
|
|
def decode_code(self, code_b): |
|
quant_b = self.quantize.embed_code(code_b) |
|
dec = self.decode(quant_b) |
|
return dec |
|
|
|
def forward(self, input): |
|
quant, diff, img_toks, loss_break = self.encode(input) |
|
pixels = self.decode(quant) |
|
return pixels, img_toks, quant |
|
|
|
def get_input(self, batch, k): |
|
x = batch[k] |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
x = x.permute(0, 3, 1, 2).contiguous() |
|
return x.float() |
|
|
|
def get_last_layer(self): |
|
return self.decoder.conv_out.weight |
|
|
|
def log_images(self, batch, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.image_key) |
|
x = x.to(self.device) |
|
xrec, _ = self(x) |
|
if x.shape[1] > 3: |
|
|
|
assert xrec.shape[1] > 3 |
|
x = self.to_rgb(x) |
|
xrec = self.to_rgb(xrec) |
|
log["inputs"] = x |
|
log["reconstructions"] = xrec |
|
return log |
|
|
|
def to_rgb(self, x): |
|
assert self.image_key == "segmentation" |
|
if not hasattr(self, "colorize"): |
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) |
|
x = F.conv2d(x, weight=self.colorize) |
|
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 |
|
return x |
|
|