|
"""This file contains some base implementation for discrminators. |
|
|
|
Copyright (2024) Bytedance Ltd. and/or its affiliates |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
|
|
TODO: Add reference to Mark Weber's tech report on the improved discriminator architecture. |
|
""" |
|
|
|
import functools |
|
import math |
|
from typing import Tuple |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .maskgit_vqgan import Conv2dSame |
|
|
|
|
|
class BlurBlock(torch.nn.Module): |
|
def __init__(self, kernel: Tuple[int] = (1, 3, 3, 1)): |
|
super().__init__() |
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32, requires_grad=False) |
|
kernel = kernel[None, :] * kernel[:, None] |
|
kernel /= kernel.sum() |
|
kernel = kernel.unsqueeze(0).unsqueeze(0) |
|
self.register_buffer("kernel", kernel) |
|
|
|
def calc_same_pad(self, i: int, k: int, s: int) -> int: |
|
return max((math.ceil(i / s) - 1) * s + (k - 1) + 1 - i, 0) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
ic, ih, iw = x.size()[-3:] |
|
pad_h = self.calc_same_pad(i=ih, k=4, s=2) |
|
pad_w = self.calc_same_pad(i=iw, k=4, s=2) |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad( |
|
x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] |
|
) |
|
|
|
weight = self.kernel.expand(ic, -1, -1, -1) |
|
|
|
out = F.conv2d(input=x, weight=weight, stride=2, groups=x.shape[1]) |
|
return out |
|
|
|
|
|
class NLayerDiscriminator(torch.nn.Module): |
|
def __init__( |
|
self, |
|
num_channels: int = 3, |
|
hidden_channels: int = 128, |
|
num_stages: int = 3, |
|
blur_resample: bool = True, |
|
blur_kernel_size: int = 4, |
|
): |
|
"""Initializes the NLayerDiscriminator. |
|
|
|
Args: |
|
num_channels -> int: The number of input channels. |
|
hidden_channels -> int: The number of hidden channels. |
|
num_stages -> int: The number of stages. |
|
blur_resample -> bool: Whether to use blur resampling. |
|
blur_kernel_size -> int: The blur kernel size. |
|
""" |
|
super().__init__() |
|
assert num_stages > 0, "Discriminator cannot have 0 stages" |
|
assert (not blur_resample) or ( |
|
blur_kernel_size >= 3 and blur_kernel_size <= 5 |
|
), "Blur kernel size must be in [3,5] when sampling]" |
|
|
|
in_channel_mult = (1,) + tuple(map(lambda t: 2**t, range(num_stages))) |
|
init_kernel_size = 5 |
|
activation = functools.partial(torch.nn.LeakyReLU, negative_slope=0.1) |
|
|
|
self.block_in = torch.nn.Sequential( |
|
Conv2dSame(num_channels, hidden_channels, kernel_size=init_kernel_size), |
|
activation(), |
|
) |
|
|
|
BLUR_KERNEL_MAP = { |
|
3: (1, 2, 1), |
|
4: (1, 3, 3, 1), |
|
5: (1, 4, 6, 4, 1), |
|
} |
|
|
|
discriminator_blocks = [] |
|
for i_level in range(num_stages): |
|
in_channels = hidden_channels * in_channel_mult[i_level] |
|
out_channels = hidden_channels * in_channel_mult[i_level + 1] |
|
block = torch.nn.Sequential( |
|
Conv2dSame( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
), |
|
( |
|
torch.nn.AvgPool2d(kernel_size=2, stride=2) |
|
if not blur_resample |
|
else BlurBlock(BLUR_KERNEL_MAP[blur_kernel_size]) |
|
), |
|
torch.nn.GroupNorm(32, out_channels), |
|
activation(), |
|
) |
|
discriminator_blocks.append(block) |
|
|
|
self.blocks = torch.nn.ModuleList(discriminator_blocks) |
|
|
|
self.pool = torch.nn.AdaptiveMaxPool2d((16, 16)) |
|
|
|
self.to_logits = torch.nn.Sequential( |
|
Conv2dSame(out_channels, out_channels, 1), |
|
activation(), |
|
Conv2dSame(out_channels, 1, kernel_size=5), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Forward pass. |
|
|
|
Args: |
|
x -> torch.Tensor: The input tensor. |
|
|
|
Returns: |
|
output -> torch.Tensor: The output tensor. |
|
""" |
|
hidden_states = self.block_in(x) |
|
for block in self.blocks: |
|
hidden_states = block(hidden_states) |
|
|
|
hidden_states = self.pool(hidden_states) |
|
|
|
return self.to_logits(hidden_states) |
|
|