import gradio as gr from fastai.vision.all import * import skimage as sk learn = load_learner('export.pkl') labels = learn.dls.vocab EXAMPLES_PATH = Path('./examples') examples = [f'{EXAMPLES_PATH}/{f.name}' for f in EXAMPLES_PATH.iterdir()] def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, examples=examples, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)