Spaces:
Runtime error
Runtime error
Upload models.py
Browse files
models.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from typing import Any, Tuple, Union
|
| 5 |
+
|
| 6 |
+
from utils import (
|
| 7 |
+
ImageType,
|
| 8 |
+
crop_image_part,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
from layers import (
|
| 12 |
+
SpectralConv2d,
|
| 13 |
+
InitLayer,
|
| 14 |
+
SLEBlock,
|
| 15 |
+
UpsampleBlockT1,
|
| 16 |
+
UpsampleBlockT2,
|
| 17 |
+
DownsampleBlockT1,
|
| 18 |
+
DownsampleBlockT2,
|
| 19 |
+
Decoder,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
from huggan.pytorch.huggan_mixin import HugGANModelHubMixin
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Generator(nn.Module, HugGANModelHubMixin):
|
| 26 |
+
|
| 27 |
+
def __init__(self, in_channels: int,
|
| 28 |
+
out_channels: int):
|
| 29 |
+
super().__init__()
|
| 30 |
+
|
| 31 |
+
self._channels = {
|
| 32 |
+
4: 1024,
|
| 33 |
+
8: 512,
|
| 34 |
+
16: 256,
|
| 35 |
+
32: 128,
|
| 36 |
+
64: 128,
|
| 37 |
+
128: 64,
|
| 38 |
+
256: 32,
|
| 39 |
+
512: 16,
|
| 40 |
+
1024: 8,
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
self._init = InitLayer(
|
| 44 |
+
in_channels=in_channels,
|
| 45 |
+
out_channels=self._channels[4],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self._upsample_8 = UpsampleBlockT2(in_channels=self._channels[4], out_channels=self._channels[8] )
|
| 49 |
+
self._upsample_16 = UpsampleBlockT1(in_channels=self._channels[8], out_channels=self._channels[16] )
|
| 50 |
+
self._upsample_32 = UpsampleBlockT2(in_channels=self._channels[16], out_channels=self._channels[32] )
|
| 51 |
+
self._upsample_64 = UpsampleBlockT1(in_channels=self._channels[32], out_channels=self._channels[64] )
|
| 52 |
+
self._upsample_128 = UpsampleBlockT2(in_channels=self._channels[64], out_channels=self._channels[128] )
|
| 53 |
+
self._upsample_256 = UpsampleBlockT1(in_channels=self._channels[128], out_channels=self._channels[256] )
|
| 54 |
+
self._upsample_512 = UpsampleBlockT2(in_channels=self._channels[256], out_channels=self._channels[512] )
|
| 55 |
+
self._upsample_1024 = UpsampleBlockT1(in_channels=self._channels[512], out_channels=self._channels[1024])
|
| 56 |
+
|
| 57 |
+
self._sle_64 = SLEBlock(in_channels=self._channels[4], out_channels=self._channels[64] )
|
| 58 |
+
self._sle_128 = SLEBlock(in_channels=self._channels[8], out_channels=self._channels[128])
|
| 59 |
+
self._sle_256 = SLEBlock(in_channels=self._channels[16], out_channels=self._channels[256])
|
| 60 |
+
self._sle_512 = SLEBlock(in_channels=self._channels[32], out_channels=self._channels[512])
|
| 61 |
+
|
| 62 |
+
self._out_128 = nn.Sequential(
|
| 63 |
+
SpectralConv2d(
|
| 64 |
+
in_channels=self._channels[128],
|
| 65 |
+
out_channels=out_channels,
|
| 66 |
+
kernel_size=1,
|
| 67 |
+
stride=1,
|
| 68 |
+
padding='same',
|
| 69 |
+
bias=False,
|
| 70 |
+
),
|
| 71 |
+
nn.Tanh(),
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
self._out_1024 = nn.Sequential(
|
| 75 |
+
SpectralConv2d(
|
| 76 |
+
in_channels=self._channels[1024],
|
| 77 |
+
out_channels=out_channels,
|
| 78 |
+
kernel_size=3,
|
| 79 |
+
stride=1,
|
| 80 |
+
padding='same',
|
| 81 |
+
bias=False,
|
| 82 |
+
),
|
| 83 |
+
nn.Tanh(),
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
def forward(self, input: torch.Tensor) -> \
|
| 87 |
+
Tuple[torch.Tensor, torch.Tensor]:
|
| 88 |
+
size_4 = self._init(input)
|
| 89 |
+
size_8 = self._upsample_8(size_4)
|
| 90 |
+
size_16 = self._upsample_16(size_8)
|
| 91 |
+
size_32 = self._upsample_32(size_16)
|
| 92 |
+
|
| 93 |
+
size_64 = self._sle_64 (size_4, self._upsample_64 (size_32) )
|
| 94 |
+
size_128 = self._sle_128(size_8, self._upsample_128(size_64) )
|
| 95 |
+
size_256 = self._sle_256(size_16, self._upsample_256(size_128))
|
| 96 |
+
size_512 = self._sle_512(size_32, self._upsample_512(size_256))
|
| 97 |
+
|
| 98 |
+
size_1024 = self._upsample_1024(size_512)
|
| 99 |
+
|
| 100 |
+
out_128 = self._out_128 (size_128)
|
| 101 |
+
out_1024 = self._out_1024(size_1024)
|
| 102 |
+
return out_1024, out_128
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class Discriminrator(nn.Module, HugGANModelHubMixin):
|
| 106 |
+
|
| 107 |
+
def __init__(self, in_channels: int):
|
| 108 |
+
super().__init__()
|
| 109 |
+
|
| 110 |
+
self._channels = {
|
| 111 |
+
4: 1024,
|
| 112 |
+
8: 512,
|
| 113 |
+
16: 256,
|
| 114 |
+
32: 128,
|
| 115 |
+
64: 128,
|
| 116 |
+
128: 64,
|
| 117 |
+
256: 32,
|
| 118 |
+
512: 16,
|
| 119 |
+
1024: 8,
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
self._init = nn.Sequential(
|
| 123 |
+
SpectralConv2d(
|
| 124 |
+
in_channels=in_channels,
|
| 125 |
+
out_channels=self._channels[1024],
|
| 126 |
+
kernel_size=4,
|
| 127 |
+
stride=2,
|
| 128 |
+
padding=1,
|
| 129 |
+
bias=False,
|
| 130 |
+
),
|
| 131 |
+
nn.LeakyReLU(negative_slope=0.2),
|
| 132 |
+
SpectralConv2d(
|
| 133 |
+
in_channels=self._channels[1024],
|
| 134 |
+
out_channels=self._channels[512],
|
| 135 |
+
kernel_size=4,
|
| 136 |
+
stride=2,
|
| 137 |
+
padding=1,
|
| 138 |
+
bias=False,
|
| 139 |
+
),
|
| 140 |
+
nn.BatchNorm2d(num_features=self._channels[512]),
|
| 141 |
+
nn.LeakyReLU(negative_slope=0.2),
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
self._downsample_256 = DownsampleBlockT2(in_channels=self._channels[512], out_channels=self._channels[256])
|
| 145 |
+
self._downsample_128 = DownsampleBlockT2(in_channels=self._channels[256], out_channels=self._channels[128])
|
| 146 |
+
self._downsample_64 = DownsampleBlockT2(in_channels=self._channels[128], out_channels=self._channels[64] )
|
| 147 |
+
self._downsample_32 = DownsampleBlockT2(in_channels=self._channels[64], out_channels=self._channels[32] )
|
| 148 |
+
self._downsample_16 = DownsampleBlockT2(in_channels=self._channels[32], out_channels=self._channels[16] )
|
| 149 |
+
|
| 150 |
+
self._sle_64 = SLEBlock(in_channels=self._channels[512], out_channels=self._channels[64])
|
| 151 |
+
self._sle_32 = SLEBlock(in_channels=self._channels[256], out_channels=self._channels[32])
|
| 152 |
+
self._sle_16 = SLEBlock(in_channels=self._channels[128], out_channels=self._channels[16])
|
| 153 |
+
|
| 154 |
+
self._small_track = nn.Sequential(
|
| 155 |
+
SpectralConv2d(
|
| 156 |
+
in_channels=in_channels,
|
| 157 |
+
out_channels=self._channels[256],
|
| 158 |
+
kernel_size=4,
|
| 159 |
+
stride=2,
|
| 160 |
+
padding=1,
|
| 161 |
+
bias=False,
|
| 162 |
+
),
|
| 163 |
+
nn.LeakyReLU(negative_slope=0.2),
|
| 164 |
+
DownsampleBlockT1(in_channels=self._channels[256], out_channels=self._channels[128]),
|
| 165 |
+
DownsampleBlockT1(in_channels=self._channels[128], out_channels=self._channels[64] ),
|
| 166 |
+
DownsampleBlockT1(in_channels=self._channels[64], out_channels=self._channels[32] ),
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
self._features_large = nn.Sequential(
|
| 170 |
+
SpectralConv2d(
|
| 171 |
+
in_channels=self._channels[16] ,
|
| 172 |
+
out_channels=self._channels[8],
|
| 173 |
+
kernel_size=1,
|
| 174 |
+
stride=1,
|
| 175 |
+
padding=0,
|
| 176 |
+
bias=False,
|
| 177 |
+
),
|
| 178 |
+
nn.BatchNorm2d(num_features=self._channels[8]),
|
| 179 |
+
nn.LeakyReLU(negative_slope=0.2),
|
| 180 |
+
SpectralConv2d(
|
| 181 |
+
in_channels=self._channels[8],
|
| 182 |
+
out_channels=1,
|
| 183 |
+
kernel_size=4,
|
| 184 |
+
stride=1,
|
| 185 |
+
padding=0,
|
| 186 |
+
bias=False,
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
self._features_small = nn.Sequential(
|
| 191 |
+
SpectralConv2d(
|
| 192 |
+
in_channels=self._channels[32],
|
| 193 |
+
out_channels=1,
|
| 194 |
+
kernel_size=4,
|
| 195 |
+
stride=1,
|
| 196 |
+
padding=0,
|
| 197 |
+
bias=False,
|
| 198 |
+
),
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
self._decoder_large = Decoder(in_channels=self._channels[16], out_channels=3)
|
| 202 |
+
self._decoder_small = Decoder(in_channels=self._channels[32], out_channels=3)
|
| 203 |
+
self._decoder_piece = Decoder(in_channels=self._channels[32], out_channels=3)
|
| 204 |
+
|
| 205 |
+
def forward(self, images_1024: torch.Tensor,
|
| 206 |
+
images_128: torch.Tensor,
|
| 207 |
+
image_type: ImageType) -> \
|
| 208 |
+
Union[
|
| 209 |
+
torch.Tensor,
|
| 210 |
+
Tuple[torch.Tensor, Tuple[Any, Any, Any]]
|
| 211 |
+
]:
|
| 212 |
+
# large track
|
| 213 |
+
|
| 214 |
+
down_512 = self._init(images_1024)
|
| 215 |
+
down_256 = self._downsample_256(down_512)
|
| 216 |
+
down_128 = self._downsample_128(down_256)
|
| 217 |
+
|
| 218 |
+
down_64 = self._downsample_64(down_128)
|
| 219 |
+
down_64 = self._sle_64(down_512, down_64)
|
| 220 |
+
|
| 221 |
+
down_32 = self._downsample_32(down_64)
|
| 222 |
+
down_32 = self._sle_32(down_256, down_32)
|
| 223 |
+
|
| 224 |
+
down_16 = self._downsample_16(down_32)
|
| 225 |
+
down_16 = self._sle_16(down_128, down_16)
|
| 226 |
+
|
| 227 |
+
# small track
|
| 228 |
+
|
| 229 |
+
down_small = self._small_track(images_128)
|
| 230 |
+
|
| 231 |
+
# features
|
| 232 |
+
|
| 233 |
+
features_large = self._features_large(down_16).view(-1)
|
| 234 |
+
features_small = self._features_small(down_small).view(-1)
|
| 235 |
+
features = torch.cat([features_large, features_small], dim=0)
|
| 236 |
+
|
| 237 |
+
# decoder
|
| 238 |
+
|
| 239 |
+
if image_type != ImageType.FAKE:
|
| 240 |
+
dec_large = self._decoder_large(down_16)
|
| 241 |
+
dec_small = self._decoder_small(down_small)
|
| 242 |
+
dec_piece = self._decoder_piece(crop_image_part(down_32, image_type))
|
| 243 |
+
return features, (dec_large, dec_small, dec_piece)
|
| 244 |
+
|
| 245 |
+
return features
|