Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
| 3 |
unmasker("Hello I'm a [MASK] model.")
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import BertForMaskedLM, BertTokenizer
|
| 4 |
+
import asyncio
|
| 5 |
+
|
| 6 |
+
# Modell und Tokenizer laden mit force_download=True
|
| 7 |
+
model_name = "bert-base-uncased"
|
| 8 |
+
model = BertForMaskedLM.from_pretrained(model_name, force_download=True)
|
| 9 |
+
tokenizer = BertTokenizer.from_pretrained(model_name, force_download=True)
|
| 10 |
+
|
| 11 |
+
# Inferenz-Funktion definieren
|
| 12 |
+
def inference(input_text):
|
| 13 |
+
if "[MASK]" not in input_text:
|
| 14 |
+
return "Error: The input text must contain the [MASK] token."
|
| 15 |
+
|
| 16 |
+
# Tokenisierung
|
| 17 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 18 |
+
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
| 19 |
+
|
| 20 |
+
# Vorhersage
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
outputs = model(**inputs)
|
| 23 |
+
logits = outputs.logits
|
| 24 |
+
|
| 25 |
+
# Wahrscheinlichsten Token für [MASK] finden
|
| 26 |
+
mask_token_logits = logits[0, mask_token_index, :]
|
| 27 |
+
top_token = torch.topk(mask_token_logits, 1, dim=1).indices[0].tolist()
|
| 28 |
+
|
| 29 |
+
# Vorhersage in den Text einfügen
|
| 30 |
+
predicted_token = tokenizer.decode(top_token)
|
| 31 |
+
result_text = input_text.replace("[MASK]", predicted_token, 1)
|
| 32 |
+
|
| 33 |
+
return result_text
|
| 34 |
+
|
| 35 |
+
# Gradio Interface definieren
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=inference,
|
| 38 |
+
inputs="text",
|
| 39 |
+
outputs="text",
|
| 40 |
+
examples=[
|
| 41 |
+
["The capital of France is [MASK]."],
|
| 42 |
+
["The quick brown fox jumps over the [MASK] dog."]
|
| 43 |
+
]
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Interface starten
|
| 47 |
+
if __name__ == "__main__":
|
| 48 |
+
# Asynchronen Ereignisloop manuell erstellen und zuweisen
|
| 49 |
+
loop = asyncio.new_event_loop()
|
| 50 |
+
asyncio.set_event_loop(loop)
|
| 51 |
+
|
| 52 |
+
iface.launch(server_port=7862)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
from transformers import pipeline
|
| 56 |
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
| 57 |
unmasker("Hello I'm a [MASK] model.")
|