File size: 7,126 Bytes
a88526d
 
 
 
 
 
 
 
 
 
 
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88526d
5f3b20a
 
 
a88526d
5f3b20a
 
 
a88526d
5f3b20a
a88526d
5f3b20a
 
 
 
 
 
 
 
 
 
a88526d
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
a88526d
5f3b20a
 
 
 
 
a88526d
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88526d
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88526d
 
5f3b20a
 
 
 
a88526d
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88526d
5f3b20a
a88526d
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88526d
 
5f3b20a
 
 
 
a88526d
5f3b20a
a88526d
5f3b20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88526d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import re
import glob
import time
from collections import defaultdict

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS

from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, FileResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from rag_system import build_rag_chain, ask_question
from vector_store import get_embeddings, load_vector_store
from llm_loader import load_llama_model
import uuid
from urllib.parse import urljoin, quote

from fastapi.responses import StreamingResponse
import json
import time

app = FastAPI()

# Configuration for serving static files
os.makedirs("static/documents", exist_ok=True)
app.mount("/static", StaticFiles(directory="static"), name="static")

# Prepare global objects
embeddings = get_embeddings(device="cpu")
vectorstore = load_vector_store(embeddings, load_path="vector_db")
llm = load_llama_model()
qa_chain = build_rag_chain(llm, vectorstore, language="en", k=7)

# Server URL configuration (adjust to match your actual environment)
BASE_URL = "http://220.124.155.35:8500"

class Question(BaseModel):
    question: str

def get_document_url(source_path):
    if not source_path or source_path == 'N/A':
        return None
    filename = os.path.basename(source_path)
    dataset_root = os.path.join(os.getcwd(), "dataset")
    # Find file matching filename in the entire dataset subdirectory
    found_path = None
    for root, dirs, files in os.walk(dataset_root):
        if filename in files:
            found_path = os.path.join(root, filename)
            break
    if not found_path or not os.path.exists(found_path):
        return None
    static_path = f"static/documents/{filename}"
    shutil.copy2(found_path, static_path)
    encoded_filename = quote(filename)
    return urljoin(BASE_URL, f"/static/documents/{encoded_filename}")

def create_download_link(url, filename):
    return f'Source: [{filename}]({url})'

@app.post("/ask")
def ask(question: Question):
    result = ask_question(qa_chain, question.question)
    
    # Process source document information
    sources = []
    for doc in result["source_documents"]:
        source_path = doc.metadata.get('source', 'N/A')
        document_url = get_document_url(source_path) if source_path != 'N/A' else None
        
        source_info = {
            "source": source_path,
            "content": doc.page_content,
            "page": doc.metadata.get('page', 'N/A'),
            "document_url": document_url,
            "filename": os.path.basename(source_path) if source_path != 'N/A' else None
        }
        sources.append(source_info)
    
    return {
        "answer": result['result'].split("A:")[-1].strip() if "A:" in result['result'] else result['result'].strip(),
        "sources": sources
    }

@app.get("/v1/models")
def list_models():
    return JSONResponse({
        "object": "list",
        "data": [
            {
                "id": "rag",
                "object": "model",
                "owned_by": "local",
            }
        ]
    })

@app.post("/v1/chat/completions")
async def openai_compatible_chat(request: Request):
    payload = await request.json()
    messages = payload.get("messages", [])
    user_input = messages[-1]["content"] if messages else ""
    stream = payload.get("stream", False)

    result = ask_question(qa_chain, user_input)
    answer = result['result']
    
    # Process source document information
    sources = []
    for doc in result["source_documents"]:
        source_path = doc.metadata.get('source', 'N/A')
        document_url = get_document_url(source_path) if source_path != 'N/A' else None
        filename = os.path.basename(source_path) if source_path != 'N/A' else None
        
        source_info = {
            "source": source_path,
            "content": doc.page_content,
            "page": doc.metadata.get('page', 'N/A'),
            "document_url": document_url,
            "filename": filename
        }
        sources.append(source_info)

    # Output source information one line at a time
    sources_md = "\nReferences Documents:\n"
    seen = set()
    for source in sources:
        key = (source['filename'], source['document_url'])
        if source['document_url'] and source['filename'] and key not in seen:
            sources_md += f"Source: [{source['filename']}]({source['document_url']})\n"
            seen.add(key)

    final_answer = answer.split("A:")[-1].strip() if "A:" in answer else answer.strip()
    final_answer += sources_md

    if not stream:
        return JSONResponse({
            "id": f"chatcmpl-{uuid.uuid4()}",
            "object": "chat.completion",
            "choices": [{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": final_answer
                },
                "finish_reason": "stop"
            }],
            "model": "rag",
        })

    # Generator for streaming response
    def event_stream():
        # Stream only the answer body first
        answer_main = answer.split("A:")[-1].strip() if "A:" in answer else answer.strip()
        for char in answer_main:
            chunk = {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion.chunk",
                "choices": [{
                    "index": 0,
                    "delta": {
                        "content": char
                    },
                    "finish_reason": None
                }]
            }
            yield f"data: {json.dumps(chunk)}\n\n"
            time.sleep(0.005)
        # Send reference documents (download links) all at once at the end
        sources_md = "\nReferences Documents:\n"
        seen = set()
        for source in sources:
            key = (source['filename'], source['document_url'])
            if source['document_url'] and source['filename'] and key not in seen:
                sources_md += f"Source: [{source['filename']}]({source['document_url']})\n"
                seen.add(key)
        if sources_md.strip() != "References Documents:":
            chunk = {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion.chunk",
                "choices": [{
                    "index": 0,
                    "delta": {
                        "content": sources_md
                    },
                    "finish_reason": None
                }]
            }
            yield f"data: {json.dumps(chunk)}\n\n"
        done = {
            "id": f"chatcmpl-{uuid.uuid4()}",
            "object": "chat.completion.chunk",
            "choices": [{
                "index": 0,
                "delta": {},
                "finish_reason": "stop"
            }]
        }
        yield f"data: {json.dumps(done)}\n\n"
        return

    return StreamingResponse(event_stream(), media_type="text/event-stream")