Spaces:
Runtime error
Runtime error
| import os | |
| import re | |
| import glob | |
| import time | |
| from collections import defaultdict | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_core.documents import Document | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| # PyMuPDF library | |
| try: | |
| import fitz # PyMuPDF | |
| PYMUPDF_AVAILABLE = True | |
| print("PyMuPDF library available") | |
| except ImportError: | |
| PYMUPDF_AVAILABLE = False | |
| print("PyMuPDF library is not installed. Install with: pip install PyMuPDF") | |
| # PDF processing utilities | |
| import pytesseract | |
| from PIL import Image | |
| from pdf2image import convert_from_path | |
| import pdfplumber | |
| from pymupdf4llm import LlamaMarkdownReader | |
| # -------------------------------- | |
| # Log Output | |
| # -------------------------------- | |
| def log(msg): | |
| print(f"[{time.strftime('%H:%M:%S')}] {msg}") | |
| # -------------------------------- | |
| # Text Cleaning Function | |
| # -------------------------------- | |
| def clean_text(text): | |
| return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text) | |
| def apply_corrections(text): | |
| corrections = { | |
| 'º©': 'info', 'Ì': 'of', '½': 'operation', 'Ã': '', '©': '', | |
| '’': "'", '“': '"', 'â€': '"' | |
| } | |
| for k, v in corrections.items(): | |
| text = text.replace(k, v) | |
| return text | |
| # -------------------------------- | |
| # HWPX Processing (Section-wise Processing Only) | |
| # -------------------------------- | |
| def load_hwpx(file_path): | |
| """Loading HWPX file (using XML parsing method only)""" | |
| import zipfile | |
| import xml.etree.ElementTree as ET | |
| import chardet | |
| log(f"Starting HWPX section-wise processing: {file_path}") | |
| start = time.time() | |
| documents = [] | |
| try: | |
| with zipfile.ZipFile(file_path, 'r') as zip_ref: | |
| file_list = zip_ref.namelist() | |
| section_files = [f for f in file_list | |
| if f.startswith('Contents/section') and f.endswith('.xml')] | |
| section_files.sort() # Sort by section0.xml, section1.xml order | |
| log(f"Found section files: {len(section_files)} files") | |
| for section_idx, section_file in enumerate(section_files): | |
| with zip_ref.open(section_file) as xml_file: | |
| raw = xml_file.read() | |
| encoding = chardet.detect(raw)['encoding'] or 'utf-8' | |
| try: | |
| text = raw.decode(encoding) | |
| except UnicodeDecodeError: | |
| text = raw.decode("cp949", errors="replace") | |
| tree = ET.ElementTree(ET.fromstring(text)) | |
| root = tree.getroot() | |
| # Find text without namespace | |
| t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't'] | |
| body_text = "" | |
| for elem in t_elements: | |
| if elem.text: | |
| body_text += clean_text(elem.text) + " " | |
| # Set page metadata to empty | |
| page_value = "" | |
| if body_text.strip(): | |
| documents.append(Document( | |
| page_content=apply_corrections(body_text), | |
| metadata={ | |
| "source": file_path, | |
| "filename": os.path.basename(file_path), | |
| "type": "hwpx_body", | |
| "page": page_value, | |
| "total_sections": len(section_files) | |
| } | |
| )) | |
| log(f"Section text extraction complete (chars: {len(body_text)})") | |
| # Find tables | |
| table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table'] | |
| if table_elements: | |
| table_text = "" | |
| for table_idx, table in enumerate(table_elements): | |
| table_text += f"[Table {table_idx + 1}]\n" | |
| rows = [elem for elem in table.iter() if elem.tag.endswith('}tr') or elem.tag == 'tr'] | |
| for row in rows: | |
| row_text = [] | |
| cells = [elem for elem in row.iter() if elem.tag.endswith('}tc') or elem.tag == 'tc'] | |
| for cell in cells: | |
| cell_texts = [] | |
| for t_elem in cell.iter(): | |
| if (t_elem.tag.endswith('}t') or t_elem.tag == 't') and t_elem.text: | |
| cell_texts.append(clean_text(t_elem.text)) | |
| row_text.append(" ".join(cell_texts)) | |
| if row_text: | |
| table_text += "\t".join(row_text) + "\n" | |
| if table_text.strip(): | |
| documents.append(Document( | |
| page_content=apply_corrections(table_text), | |
| metadata={ | |
| "source": file_path, | |
| "filename": os.path.basename(file_path), | |
| "type": "hwpx_table", | |
| "page": page_value, | |
| "total_sections": len(section_files) | |
| } | |
| )) | |
| log(f"Table extraction complete") | |
| # Find images | |
| if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']: | |
| documents.append(Document( | |
| page_content="[Image included]", | |
| metadata={ | |
| "source": file_path, | |
| "filename": os.path.basename(file_path), | |
| "type": "hwpx_image", | |
| "page": page_value, | |
| "total_sections": len(section_files) | |
| } | |
| )) | |
| log(f"Image found") | |
| except Exception as e: | |
| log(f"HWPX processing error: {e}") | |
| duration = time.time() - start | |
| # Print summary of document information | |
| if documents: | |
| log(f"Number of extracted documents: {len(documents)}") | |
| log(f"HWPX processing complete: {file_path} ⏱️ {duration:.2f}s, total {len(documents)} documents") | |
| return documents | |
| # -------------------------------- | |
| # PDF Processing Functions (same as before) | |
| # -------------------------------- | |
| def run_ocr_on_image(image: Image.Image, lang='kor+eng'): | |
| return pytesseract.image_to_string(image, lang=lang) | |
| def extract_images_with_ocr(pdf_path, lang='kor+eng'): | |
| try: | |
| images = convert_from_path(pdf_path) | |
| page_ocr_data = {} | |
| for idx, img in enumerate(images): | |
| page_num = idx + 1 | |
| text = run_ocr_on_image(img, lang=lang) | |
| if text.strip(): | |
| page_ocr_data[page_num] = text.strip() | |
| return page_ocr_data | |
| except Exception as e: | |
| print(f"Image OCR failed: {e}") | |
| return {} | |
| def extract_tables_with_pdfplumber(pdf_path): | |
| page_table_data = {} | |
| try: | |
| with pdfplumber.open(pdf_path) as pdf: | |
| for i, page in enumerate(pdf.pages): | |
| page_num = i + 1 | |
| tables = page.extract_tables() | |
| table_text = "" | |
| for t_index, table in enumerate(tables): | |
| if table: | |
| table_text += f"[Table {t_index+1}]\n" | |
| for row in table: | |
| row_text = "\t".join(cell if cell else "" for cell in row) | |
| table_text += row_text + "\n" | |
| if table_text.strip(): | |
| page_table_data[page_num] = table_text.strip() | |
| return page_table_data | |
| except Exception as e: | |
| print(f"Table extraction failed: {e}") | |
| return {} | |
| def extract_body_text_with_pages(pdf_path): | |
| page_body_data = {} | |
| try: | |
| pdf_processor = LlamaMarkdownReader() | |
| docs = pdf_processor.load_data(file_path=pdf_path) | |
| combined_text = "" | |
| for d in docs: | |
| if isinstance(d, dict) and "text" in d: | |
| combined_text += d["text"] | |
| elif hasattr(d, "text"): | |
| combined_text += d.text | |
| if combined_text.strip(): | |
| chars_per_page = 2000 | |
| start = 0 | |
| page_num = 1 | |
| while start < len(combined_text): | |
| end = start + chars_per_page | |
| if end > len(combined_text): | |
| end = len(combined_text) | |
| page_text = combined_text[start:end] | |
| if page_text.strip(): | |
| page_body_data[page_num] = page_text.strip() | |
| page_num += 1 | |
| if end == len(combined_text): | |
| break | |
| start = end - 100 | |
| except Exception as e: | |
| print(f"Body extraction failed: {e}") | |
| return page_body_data | |
| def load_pdf_with_metadata(pdf_path): | |
| """Extracts page-specific information from a PDF file""" | |
| log(f"Starting PDF page-wise processing: {pdf_path}") | |
| start = time.time() | |
| # First, check the actual number of pages using PyPDFLoader | |
| try: | |
| from langchain_community.document_loaders import PyPDFLoader | |
| loader = PyPDFLoader(pdf_path) | |
| pdf_pages = loader.load() | |
| actual_total_pages = len(pdf_pages) | |
| log(f"Actual page count as verified by PyPDFLoader: {actual_total_pages}") | |
| except Exception as e: | |
| log(f"PyPDFLoader page count verification failed: {e}") | |
| actual_total_pages = 1 | |
| try: | |
| page_tables = extract_tables_with_pdfplumber(pdf_path) | |
| except Exception as e: | |
| page_tables = {} | |
| print(f"Table extraction failed: {e}") | |
| try: | |
| page_ocr = extract_images_with_ocr(pdf_path) | |
| except Exception as e: | |
| page_ocr = {} | |
| print(f"Image OCR failed: {e}") | |
| try: | |
| page_body = extract_body_text_with_pages(pdf_path) | |
| except Exception as e: | |
| page_body = {} | |
| print(f"Body extraction failed: {e}") | |
| duration = time.time() - start | |
| log(f"PDF page-wise processing complete: {pdf_path} ⏱️ {duration:.2f}s") | |
| # Set the total number of pages based on the actual number of pages | |
| all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys()) | |
| if all_pages: | |
| max_extracted_page = max(all_pages) | |
| # Use the greater of the actual and extracted page numbers | |
| total_pages = max(actual_total_pages, max_extracted_page) | |
| else: | |
| total_pages = actual_total_pages | |
| log(f"Final total page count set to: {total_pages}") | |
| docs = [] | |
| for page_num in sorted(all_pages): | |
| if page_num in page_tables and page_tables[page_num].strip(): | |
| docs.append(Document( | |
| page_content=clean_text(apply_corrections(page_tables[page_num])), | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "table", | |
| "page": page_num, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| log(f"Page {page_num}: Table extraction complete") | |
| if page_num in page_body and page_body[page_num].strip(): | |
| docs.append(Document( | |
| page_content=clean_text(apply_corrections(page_body[page_num])), | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "body", | |
| "page": page_num, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| log(f"Page {page_num}: Body extraction complete") | |
| if page_num in page_ocr and page_ocr[page_num].strip(): | |
| docs.append(Document( | |
| page_content=clean_text(apply_corrections(page_ocr[page_num])), | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "ocr", | |
| "page": page_num, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| log(f"Page {page_num}: OCR extraction complete") | |
| if not docs: | |
| docs.append(Document( | |
| page_content="[Content extraction failed]", | |
| metadata={ | |
| "source": pdf_path, | |
| "filename": os.path.basename(pdf_path), | |
| "type": "error", | |
| "page": 1, | |
| "total_pages": total_pages | |
| } | |
| )) | |
| # Print summary of page information | |
| if docs: | |
| page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')] | |
| if page_numbers: | |
| log(f"Extracted page range: {min(page_numbers)} ~ {max(page_numbers)}") | |
| log(f"PDF documents with extracted pages: {len(docs)} documents (total {total_pages} pages)") | |
| return docs | |
| # -------------------------------- | |
| # Document Loading and Splitting | |
| # -------------------------------- | |
| def load_documents(folder_path): | |
| documents = [] | |
| for file in glob.glob(os.path.join(folder_path, "*.hwpx")): | |
| log(f"HWPX file found: {file}") | |
| docs = load_hwpx(file) | |
| documents.extend(docs) | |
| for file in glob.glob(os.path.join(folder_path, "*.pdf")): | |
| log(f"PDF file found: {file}") | |
| documents.extend(load_pdf_with_metadata(file)) | |
| log(f"Document loading complete! Total documents: {len(documents)}") | |
| return documents | |
| def split_documents(documents, chunk_size=800, chunk_overlap=100): | |
| log("Starting chunk splitting") | |
| splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=chunk_size, | |
| chunk_overlap=chunk_overlap, | |
| length_function=len | |
| ) | |
| chunks = [] | |
| for doc in documents: | |
| split = splitter.split_text(doc.page_content) | |
| for i, chunk in enumerate(split): | |
| enriched_chunk = f"passage: {chunk}" | |
| chunks.append(Document( | |
| page_content=enriched_chunk, | |
| metadata={**doc.metadata, "chunk_index": i} | |
| )) | |
| log(f"Chunk splitting complete: Created {len(chunks)} chunks") | |
| return chunks | |
| # -------------------------------- | |
| # Main Execution | |
| # -------------------------------- | |
| def build_rag_chain(llm, vectorstore, language="en", k=7): | |
| """Build RAG Chain""" | |
| question_prompt, refine_prompt = create_refine_prompts_with_pages(language) | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="refine", | |
| retriever=vectorstore.as_retriever(search_kwargs={"k": k}), | |
| chain_type_kwargs={ | |
| "question_prompt": question_prompt, | |
| "refine_prompt": refine_prompt | |
| }, | |
| return_source_documents=True | |
| ) | |
| return qa_chain | |
| def ask_question_with_pages(qa_chain, question): | |
| """Process questions""" | |
| result = qa_chain({"query": question}) | |
| # Extract only the text after A: from the result | |
| answer = result['result'] | |
| final_answer = answer.split("A:")[-1].strip() if "A:" in answer else answer.strip() | |
| print(f"\nQuestion: {question}") | |
| print(f"\nFinal Answer: {final_answer}") | |
| # Metadata debugging info (disabled) | |
| # debug_metadata_info(result["source_documents"]) | |
| # Organize reference documents by page | |
| print("\nReference Document Summary:") | |
| source_info = {} | |
| for doc in result["source_documents"]: | |
| source = doc.metadata.get('source', 'unknown') | |
| page = doc.metadata.get('page', 'unknown') | |
| doc_type = doc.metadata.get('type', 'unknown') | |
| section = doc.metadata.get('section', None) | |
| total_pages = doc.metadata.get('total_pages', None) | |
| filename = doc.metadata.get('filename', 'unknown') | |
| if filename == 'unknown': | |
| filename = os.path.basename(source) if source != 'unknown' else 'unknown' | |
| if filename not in source_info: | |
| source_info[filename] = { | |
| 'pages': set(), | |
| 'sections': set(), | |
| 'types': set(), | |
| 'total_pages': total_pages | |
| } | |
| if page != 'unknown': | |
| if isinstance(page, str) and page.startswith('section'): | |
| source_info[filename]['sections'].add(page) | |
| else: | |
| source_info[filename]['pages'].add(page) | |
| if section is not None: | |
| source_info[filename]['sections'].add(f"section {section}") | |
| source_info[filename]['types'].add(doc_type) | |
| # Result output | |
| total_chunks = len(result["source_documents"]) | |
| print(f"Total chunks used: {total_chunks}") | |
| for filename, info in source_info.items(): | |
| print(f"\n- {filename}") | |
| # Total page count information | |
| if info['total_pages']: | |
| print(f" Total page count: {info['total_pages']}") | |
| # Page information output | |
| if info['pages']: | |
| pages_list = list(info['pages']) | |
| print(f" Pages: {', '.join(map(str, pages_list))}") | |
| # Section information output | |
| if info['sections']: | |
| sections_list = sorted(list(info['sections'])) | |
| print(f" Sections: {', '.join(sections_list)}") | |
| # If no pages or sections are present | |
| if not info['pages'] and not info['sections']: | |
| print(f" Pages: No information") | |
| # Output document type | |
| types_str = ', '.join(sorted(info['types'])) | |
| print(f" Type: {types_str}") | |
| return result | |
| # Existing ask_question function is replaced with ask_question_with_pages | |
| def ask_question(qa_chain, question): | |
| """Wrapper function for compatibility""" | |
| return ask_question_with_pages(qa_chain, question) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="RAG refine system (supports page numbers)") | |
| parser.add_argument("--vector_store", type=str, default="vector_db", help="Vector store path") | |
| parser.add_argument("--model", type=str, default="LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct", help="LLM model ID") | |
| parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device to use") | |
| parser.add_argument("--k", type=int, default=7, help="Number of documents to retrieve") | |
| parser.add_argument("--language", type=str, default="en", choices=["ko", "en"], help="Language to use") | |
| parser.add_argument("--query", type=str, help="Question (runs interactive mode if not provided)") | |
| args = parser.parse_args() | |
| embeddings = get_embeddings(device=args.device) | |
| vectorstore = load_vector_store(embeddings, load_path=args.vector_store) | |
| llm = load_llama_model() | |
| from rag_system import build_rag_chain, ask_question_with_pages #Hinzugefügt, um den neuen ask_question_with_pages code in der Konsole nutzbar zu machen. | |
| qa_chain = build_rag_chain(llm, vectorstore, language=args.language, k=args.k) | |
| print("RAG system with page number support ready!") | |
| if args.query: | |
| ask_question_with_pages(qa_chain, args.query) | |
| else: | |
| print("Starting interactive mode (enter 'exit', 'quit' to finish)") | |
| while True: | |
| try: | |
| query = input("Question: ").strip() | |
| if query.lower() in ["exit", "quit"]: | |
| break | |
| if query: # Prevent empty input | |
| ask_question_with_pages(qa_chain, query) | |
| except KeyboardInterrupt: | |
| print("\n\nExiting program.") | |
| break | |
| except Exception as e: | |
| print(f"Error occurred: {e}\nPlease try again.") |