hugging2021 commited on
Commit
36daa1c
·
verified ·
1 Parent(s): a6fb29f

Update rag_server.py

Browse files
Files changed (1) hide show
  1. rag_server.py +6 -14
rag_server.py CHANGED
@@ -13,9 +13,9 @@ from transformers import AutoModel
13
  import streamlit as st
14
 
15
  # --- Konfiguration ---
 
16
  HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
17
  MODEL_NAME = "dannyk97/mistral-screenplay-model"
18
- HF_CACHE_DIR = os.environ.get("HF_CACHE_DIR", "/app/cache") #Falls ein Fehler Auftritt, wird der Ordner auf /app/cache gesetzt.
19
 
20
  # --- Hilfsfunktionen ---
21
 
@@ -55,18 +55,10 @@ def chunk_text(text, chunk_size=500, chunk_overlap=50):
55
  )
56
  return text_splitter.split_text(text)
57
 
58
- # Function to create embeddings and store in FAISS
59
- def create_embeddings_and_store(chunks, cache_folder=HF_CACHE_DIR):
60
- try:
61
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", cache_folder=cache_folder)
62
- vector_db = FAISS.from_texts(chunks, embedding=embeddings)
63
- return vector_db
64
- except Exception as e:
65
- print(f"❌ Fehler beim Erstellen der Embeddings: {e}")
66
- print("Verwende Dummy Embeddings, um fortzufahren (Funktionen sind eingeschränkt).")
67
- # Verwenden Sie eine einfachere Fallback Lösung
68
- vector_db = FAISS.from_texts(["fallback text"], HuggingFaceEmbeddings(model_name="all-mpnet-base-v2", cache_folder=cache_folder))
69
- return vector_db
70
 
71
  # Function to query the vector database and interact with Hugging Face Inference API
72
  def query_vector_db(query, vector_db):
@@ -116,7 +108,7 @@ for link in drive_links:
116
 
117
  if all_chunks:
118
  # Generate embeddings and store in FAISS
119
- vector_db = create_embeddings_and_store(all_chunks, cache_folder=HF_CACHE_DIR)
120
  st.write("Embeddings Generated and Stored Successfully!")
121
 
122
  # User query input
 
13
  import streamlit as st
14
 
15
  # --- Konfiguration ---
16
+ os.environ["HF_HOME"] = "/app/hf_cache" # Verwenden Sie einen absoluten Pfad innerhalb des Containers und erzwingen den Cache!
17
  HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
18
  MODEL_NAME = "dannyk97/mistral-screenplay-model"
 
19
 
20
  # --- Hilfsfunktionen ---
21
 
 
55
  )
56
  return text_splitter.split_text(text)
57
 
58
+ def create_embeddings_and_store(chunks):
59
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
60
+ vector_db = FAISS.from_texts(chunks, embedding=embeddings)
61
+ return vector_db
 
 
 
 
 
 
 
 
62
 
63
  # Function to query the vector database and interact with Hugging Face Inference API
64
  def query_vector_db(query, vector_db):
 
108
 
109
  if all_chunks:
110
  # Generate embeddings and store in FAISS
111
+ vector_db = create_embeddings_and_store(all_chunks)
112
  st.write("Embeddings Generated and Stored Successfully!")
113
 
114
  # User query input