Spaces:
Runtime error
Runtime error
Update rag_server.py
Browse files- rag_server.py +6 -14
rag_server.py
CHANGED
@@ -13,9 +13,9 @@ from transformers import AutoModel
|
|
13 |
import streamlit as st
|
14 |
|
15 |
# --- Konfiguration ---
|
|
|
16 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
|
17 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
18 |
-
HF_CACHE_DIR = os.environ.get("HF_CACHE_DIR", "/app/cache") #Falls ein Fehler Auftritt, wird der Ordner auf /app/cache gesetzt.
|
19 |
|
20 |
# --- Hilfsfunktionen ---
|
21 |
|
@@ -55,18 +55,10 @@ def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
|
55 |
)
|
56 |
return text_splitter.split_text(text)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
63 |
-
return vector_db
|
64 |
-
except Exception as e:
|
65 |
-
print(f"❌ Fehler beim Erstellen der Embeddings: {e}")
|
66 |
-
print("Verwende Dummy Embeddings, um fortzufahren (Funktionen sind eingeschränkt).")
|
67 |
-
# Verwenden Sie eine einfachere Fallback Lösung
|
68 |
-
vector_db = FAISS.from_texts(["fallback text"], HuggingFaceEmbeddings(model_name="all-mpnet-base-v2", cache_folder=cache_folder))
|
69 |
-
return vector_db
|
70 |
|
71 |
# Function to query the vector database and interact with Hugging Face Inference API
|
72 |
def query_vector_db(query, vector_db):
|
@@ -116,7 +108,7 @@ for link in drive_links:
|
|
116 |
|
117 |
if all_chunks:
|
118 |
# Generate embeddings and store in FAISS
|
119 |
-
vector_db = create_embeddings_and_store(all_chunks
|
120 |
st.write("Embeddings Generated and Stored Successfully!")
|
121 |
|
122 |
# User query input
|
|
|
13 |
import streamlit as st
|
14 |
|
15 |
# --- Konfiguration ---
|
16 |
+
os.environ["HF_HOME"] = "/app/hf_cache" # Verwenden Sie einen absoluten Pfad innerhalb des Containers und erzwingen den Cache!
|
17 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
|
18 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
|
|
19 |
|
20 |
# --- Hilfsfunktionen ---
|
21 |
|
|
|
55 |
)
|
56 |
return text_splitter.split_text(text)
|
57 |
|
58 |
+
def create_embeddings_and_store(chunks):
|
59 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
60 |
+
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
61 |
+
return vector_db
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Function to query the vector database and interact with Hugging Face Inference API
|
64 |
def query_vector_db(query, vector_db):
|
|
|
108 |
|
109 |
if all_chunks:
|
110 |
# Generate embeddings and store in FAISS
|
111 |
+
vector_db = create_embeddings_and_store(all_chunks)
|
112 |
st.write("Embeddings Generated and Stored Successfully!")
|
113 |
|
114 |
# User query input
|