Spaces:
Build error
Build error
Update rag_system.py
Browse files- rag_system.py +427 -214
rag_system.py
CHANGED
|
@@ -1,227 +1,440 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
else:
|
| 51 |
-
|
| 52 |
-
input_variables=["context_str", "question"],
|
| 53 |
-
template="""
|
| 54 |
-
Here are the retrieved document fragments:
|
| 55 |
-
|
| 56 |
-
{context_str}
|
| 57 |
-
|
| 58 |
-
Please answer the question based on the above documents.
|
| 59 |
-
|
| 60 |
-
**Important rules:**
|
| 61 |
-
- Only use information explicitly stated in the documents
|
| 62 |
-
- If citing sources, only mention what is clearly indicated in the documents above
|
| 63 |
-
- Do not guess or infer page numbers not shown in the context
|
| 64 |
-
- If unsure, state "not confirmed in the provided documents"
|
| 65 |
-
|
| 66 |
-
Question: {question}
|
| 67 |
-
Answer:"""
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
refine_prompt = PromptTemplate(
|
| 71 |
-
input_variables=["question", "existing_answer", "context_str"],
|
| 72 |
-
template="""
|
| 73 |
-
Existing answer:
|
| 74 |
-
{existing_answer}
|
| 75 |
-
|
| 76 |
-
Additional documents:
|
| 77 |
-
{context_str}
|
| 78 |
-
|
| 79 |
-
Refine the existing answer using the additional documents.
|
| 80 |
-
|
| 81 |
-
**Rules:**
|
| 82 |
-
- Only use information explicitly stated in the additional documents
|
| 83 |
-
- Create one coherent final answer
|
| 84 |
-
- Do not mention uncertain sources or page numbers
|
| 85 |
-
|
| 86 |
-
Question: {question}
|
| 87 |
-
Answer:"""
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
return question_prompt, refine_prompt
|
| 91 |
-
|
| 92 |
-
def build_rag_chain(llm, vectorstore, language="ko", k=7):
|
| 93 |
-
"""RAG ์ฒด์ธ ๊ตฌ์ถ"""
|
| 94 |
-
question_prompt, refine_prompt = create_refine_prompts_with_pages(language)
|
| 95 |
-
|
| 96 |
-
qa_chain = RetrievalQA.from_chain_type(
|
| 97 |
-
llm=llm,
|
| 98 |
-
chain_type="refine",
|
| 99 |
-
retriever=vectorstore.as_retriever(search_kwargs={"k": k}),
|
| 100 |
-
chain_type_kwargs={
|
| 101 |
-
"question_prompt": question_prompt,
|
| 102 |
-
"refine_prompt": refine_prompt
|
| 103 |
-
},
|
| 104 |
-
return_source_documents=True
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
return qa_chain
|
| 108 |
-
|
| 109 |
-
def ask_question_with_pages(qa_chain, question):
|
| 110 |
-
"""์ง๋ฌธ ์ฒ๋ฆฌ"""
|
| 111 |
-
result = qa_chain.invoke({"query": question})
|
| 112 |
-
|
| 113 |
-
# ๊ฒฐ๊ณผ์์ A: ์ดํ ๋ฌธ์ฅ๋ง ์ถ์ถ
|
| 114 |
-
answer = result['result']
|
| 115 |
-
final_answer = answer.split("A:")[-1].strip() if "A:" in answer else answer.strip()
|
| 116 |
|
| 117 |
-
|
| 118 |
-
print(f"\n๐ข ์ต์ข
๋ต๋ณ: {final_answer}")
|
| 119 |
|
| 120 |
-
|
| 121 |
-
# debug_metadata_info(result["source_documents"])
|
| 122 |
-
|
| 123 |
-
# ์ฐธ๊ณ ๋ฌธ์๋ฅผ ํ์ด์ง๋ณ๋ก ์ ๋ฆฌ
|
| 124 |
-
print("\n๐ ์ฐธ๊ณ ๋ฌธ์ ์์ฝ:")
|
| 125 |
-
source_info = {}
|
| 126 |
|
| 127 |
-
for
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
if
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
}
|
| 145 |
-
|
| 146 |
-
if page != 'N/A':
|
| 147 |
-
if isinstance(page, str) and page.startswith('์น์
'):
|
| 148 |
-
source_info[filename]['sections'].add(page)
|
| 149 |
-
else:
|
| 150 |
-
source_info[filename]['pages'].add(page)
|
| 151 |
-
|
| 152 |
-
if section is not None:
|
| 153 |
-
source_info[filename]['sections'].add(f"์น์
{section}")
|
| 154 |
-
|
| 155 |
-
source_info[filename]['types'].add(doc_type)
|
| 156 |
-
|
| 157 |
-
# ๊ฒฐ๊ณผ ์ถ๋ ฅ
|
| 158 |
-
total_chunks = len(result["source_documents"])
|
| 159 |
-
print(f"์ด ์ฌ์ฉ๋ ์ฒญํฌ ์: {total_chunks}")
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
def
|
| 190 |
-
"
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
|
|
|
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
if query: # ๋น ์
๋ ฅ ๋ฐฉ์ง
|
| 222 |
-
ask_question_with_pages(qa_chain, query)
|
| 223 |
-
except KeyboardInterrupt:
|
| 224 |
-
print("\n\nํ๋ก๊ทธ๋จ์ ์ข
๋ฃํฉ๋๋ค.")
|
| 225 |
-
break
|
| 226 |
-
except Exception as e:
|
| 227 |
-
print(f"โ ์ค๋ฅ ๋ฐ์: {e}\n๋ค์ ์๋ํด์ฃผ์ธ์.")
|
|
|
|
| 1 |
import os
|
| 2 |
+
import re
|
| 3 |
+
import glob
|
| 4 |
+
import time
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_core.documents import Document
|
| 9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
+
from langchain_community.vectorstores import FAISS
|
| 11 |
+
|
| 12 |
+
# PyMuPDF library
|
| 13 |
+
try:
|
| 14 |
+
import fitz # PyMuPDF
|
| 15 |
+
PYMUPDF_AVAILABLE = True
|
| 16 |
+
print("โ
PyMuPDF library available")
|
| 17 |
+
except ImportError:
|
| 18 |
+
PYMUPDF_AVAILABLE = False
|
| 19 |
+
print("โ ๏ธ PyMuPDF library is not installed. Install with: pip install PyMuPDF")
|
| 20 |
+
|
| 21 |
+
# PDF processing utilities
|
| 22 |
+
import pytesseract
|
| 23 |
+
from PIL import Image
|
| 24 |
+
from pdf2image import convert_from_path
|
| 25 |
+
import pdfplumber
|
| 26 |
+
from pymupdf4llm import LlamaMarkdownReader
|
| 27 |
+
|
| 28 |
+
# --------------------------------
|
| 29 |
+
# Log Output
|
| 30 |
+
# --------------------------------
|
| 31 |
+
|
| 32 |
+
def log(msg):
|
| 33 |
+
print(f"[{time.strftime('%H:%M:%S')}] {msg}")
|
| 34 |
+
|
| 35 |
+
# --------------------------------
|
| 36 |
+
# Text Cleaning Function
|
| 37 |
+
# --------------------------------
|
| 38 |
+
|
| 39 |
+
def clean_text(text):
|
| 40 |
+
return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text)
|
| 41 |
+
|
| 42 |
+
def apply_corrections(text):
|
| 43 |
+
corrections = {
|
| 44 |
+
'ยบยฉ': 'info', 'ร': 'of', 'ยฝ': 'operation', 'ร': '', 'ยฉ': '',
|
| 45 |
+
'รขโฌโข': "'", 'รขโฌล': '"', 'รขโฌ': '"'
|
| 46 |
+
}
|
| 47 |
+
for k, v in corrections.items():
|
| 48 |
+
text = text.replace(k, v)
|
| 49 |
+
return text
|
| 50 |
+
|
| 51 |
+
# --------------------------------
|
| 52 |
+
# HWPX Processing (Section-wise Processing Only)
|
| 53 |
+
# --------------------------------
|
| 54 |
+
|
| 55 |
+
def load_hwpx(file_path):
|
| 56 |
+
"""Loading HWPX file (using XML parsing method only)"""
|
| 57 |
+
import zipfile
|
| 58 |
+
import xml.etree.ElementTree as ET
|
| 59 |
+
import chardet
|
| 60 |
+
|
| 61 |
+
log(f"Starting HWPX section-wise processing: {file_path}")
|
| 62 |
+
start = time.time()
|
| 63 |
+
documents = []
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
with zipfile.ZipFile(file_path, 'r') as zip_ref:
|
| 67 |
+
file_list = zip_ref.namelist()
|
| 68 |
+
section_files = [f for f in file_list
|
| 69 |
+
if f.startswith('Contents/section') and f.endswith('.xml')]
|
| 70 |
+
section_files.sort() # Sort by section0.xml, section1.xml order
|
| 71 |
+
|
| 72 |
+
log(f"Found section files: {len(section_files)} files")
|
| 73 |
+
|
| 74 |
+
for section_idx, section_file in enumerate(section_files):
|
| 75 |
+
with zip_ref.open(section_file) as xml_file:
|
| 76 |
+
raw = xml_file.read()
|
| 77 |
+
encoding = chardet.detect(raw)['encoding'] or 'utf-8'
|
| 78 |
+
try:
|
| 79 |
+
text = raw.decode(encoding)
|
| 80 |
+
except UnicodeDecodeError:
|
| 81 |
+
text = raw.decode("cp949", errors="replace")
|
| 82 |
+
|
| 83 |
+
tree = ET.ElementTree(ET.fromstring(text))
|
| 84 |
+
root = tree.getroot()
|
| 85 |
+
|
| 86 |
+
# Find text without namespace
|
| 87 |
+
t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't']
|
| 88 |
+
body_text = ""
|
| 89 |
+
for elem in t_elements:
|
| 90 |
+
if elem.text:
|
| 91 |
+
body_text += clean_text(elem.text) + " "
|
| 92 |
+
|
| 93 |
+
# Set page metadata to empty
|
| 94 |
+
page_value = ""
|
| 95 |
+
|
| 96 |
+
if body_text.strip():
|
| 97 |
+
documents.append(Document(
|
| 98 |
+
page_content=apply_corrections(body_text),
|
| 99 |
+
metadata={
|
| 100 |
+
"source": file_path,
|
| 101 |
+
"filename": os.path.basename(file_path),
|
| 102 |
+
"type": "hwpx_body",
|
| 103 |
+
"page": page_value,
|
| 104 |
+
"total_sections": len(section_files)
|
| 105 |
+
}
|
| 106 |
+
))
|
| 107 |
+
log(f"Section text extraction complete (chars: {len(body_text)})")
|
| 108 |
+
|
| 109 |
+
# Find tables
|
| 110 |
+
table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table']
|
| 111 |
+
if table_elements:
|
| 112 |
+
table_text = ""
|
| 113 |
+
for table_idx, table in enumerate(table_elements):
|
| 114 |
+
table_text += f"[Table {table_idx + 1}]\n"
|
| 115 |
+
rows = [elem for elem in table.iter() if elem.tag.endswith('}tr') or elem.tag == 'tr']
|
| 116 |
+
for row in rows:
|
| 117 |
+
row_text = []
|
| 118 |
+
cells = [elem for elem in row.iter() if elem.tag.endswith('}tc') or elem.tag == 'tc']
|
| 119 |
+
for cell in cells:
|
| 120 |
+
cell_texts = []
|
| 121 |
+
for t_elem in cell.iter():
|
| 122 |
+
if (t_elem.tag.endswith('}t') or t_elem.tag == 't') and t_elem.text:
|
| 123 |
+
cell_texts.append(clean_text(t_elem.text))
|
| 124 |
+
row_text.append(" ".join(cell_texts))
|
| 125 |
+
if row_text:
|
| 126 |
+
table_text += "\t".join(row_text) + "\n"
|
| 127 |
+
|
| 128 |
+
if table_text.strip():
|
| 129 |
+
documents.append(Document(
|
| 130 |
+
page_content=apply_corrections(table_text),
|
| 131 |
+
metadata={
|
| 132 |
+
"source": file_path,
|
| 133 |
+
"filename": os.path.basename(file_path),
|
| 134 |
+
"type": "hwpx_table",
|
| 135 |
+
"page": page_value,
|
| 136 |
+
"total_sections": len(section_files)
|
| 137 |
+
}
|
| 138 |
+
))
|
| 139 |
+
log(f"Table extraction complete")
|
| 140 |
+
|
| 141 |
+
# Find images
|
| 142 |
+
if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']:
|
| 143 |
+
documents.append(Document(
|
| 144 |
+
page_content="[Image included]",
|
| 145 |
+
metadata={
|
| 146 |
+
"source": file_path,
|
| 147 |
+
"filename": os.path.basename(file_path),
|
| 148 |
+
"type": "hwpx_image",
|
| 149 |
+
"page": page_value,
|
| 150 |
+
"total_sections": len(section_files)
|
| 151 |
+
}
|
| 152 |
+
))
|
| 153 |
+
log(f"Image found")
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
log(f"HWPX processing error: {e}")
|
| 157 |
+
|
| 158 |
+
duration = time.time() - start
|
| 159 |
+
|
| 160 |
+
# Print summary of document information
|
| 161 |
+
if documents:
|
| 162 |
+
log(f"Number of extracted documents: {len(documents)}")
|
| 163 |
+
|
| 164 |
+
log(f"HWPX processing complete: {file_path} โฑ๏ธ {duration:.2f}s, total {len(documents)} documents")
|
| 165 |
+
return documents
|
| 166 |
+
|
| 167 |
+
# --------------------------------
|
| 168 |
+
# PDF Processing Functions (same as before)
|
| 169 |
+
# --------------------------------
|
| 170 |
+
|
| 171 |
+
def run_ocr_on_image(image: Image.Image, lang='kor+eng'):
|
| 172 |
+
return pytesseract.image_to_string(image, lang=lang)
|
| 173 |
+
|
| 174 |
+
def extract_images_with_ocr(pdf_path, lang='kor+eng'):
|
| 175 |
+
try:
|
| 176 |
+
images = convert_from_path(pdf_path)
|
| 177 |
+
page_ocr_data = {}
|
| 178 |
+
for idx, img in enumerate(images):
|
| 179 |
+
page_num = idx + 1
|
| 180 |
+
text = run_ocr_on_image(img, lang=lang)
|
| 181 |
+
if text.strip():
|
| 182 |
+
page_ocr_data[page_num] = text.strip()
|
| 183 |
+
return page_ocr_data
|
| 184 |
+
except Exception as e:
|
| 185 |
+
print(f"Image OCR failed: {e}")
|
| 186 |
+
return {}
|
| 187 |
+
|
| 188 |
+
def extract_tables_with_pdfplumber(pdf_path):
|
| 189 |
+
page_table_data = {}
|
| 190 |
+
try:
|
| 191 |
+
with pdfplumber.open(pdf_path) as pdf:
|
| 192 |
+
for i, page in enumerate(pdf.pages):
|
| 193 |
+
page_num = i + 1
|
| 194 |
+
tables = page.extract_tables()
|
| 195 |
+
table_text = ""
|
| 196 |
+
for t_index, table in enumerate(tables):
|
| 197 |
+
if table:
|
| 198 |
+
table_text += f"[Table {t_index+1}]\n"
|
| 199 |
+
for row in table:
|
| 200 |
+
row_text = "\t".join(cell if cell else "" for cell in row)
|
| 201 |
+
table_text += row_text + "\n"
|
| 202 |
+
if table_text.strip():
|
| 203 |
+
page_table_data[page_num] = table_text.strip()
|
| 204 |
+
return page_table_data
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"Table extraction failed: {e}")
|
| 207 |
+
return {}
|
| 208 |
+
|
| 209 |
+
def extract_body_text_with_pages(pdf_path):
|
| 210 |
+
page_body_data = {}
|
| 211 |
+
try:
|
| 212 |
+
pdf_processor = LlamaMarkdownReader()
|
| 213 |
+
docs = pdf_processor.load_data(file_path=pdf_path)
|
| 214 |
+
|
| 215 |
+
combined_text = ""
|
| 216 |
+
for d in docs:
|
| 217 |
+
if isinstance(d, dict) and "text" in d:
|
| 218 |
+
combined_text += d["text"]
|
| 219 |
+
elif hasattr(d, "text"):
|
| 220 |
+
combined_text += d.text
|
| 221 |
+
|
| 222 |
+
if combined_text.strip():
|
| 223 |
+
chars_per_page = 2000
|
| 224 |
+
start = 0
|
| 225 |
+
page_num = 1
|
| 226 |
+
|
| 227 |
+
while start < len(combined_text):
|
| 228 |
+
end = start + chars_per_page
|
| 229 |
+
if end > len(combined_text):
|
| 230 |
+
end = len(combined_text)
|
| 231 |
+
|
| 232 |
+
page_text = combined_text[start:end]
|
| 233 |
+
if page_text.strip():
|
| 234 |
+
page_body_data[page_num] = page_text.strip()
|
| 235 |
+
page_num += 1
|
| 236 |
+
|
| 237 |
+
if end == len(combined_text):
|
| 238 |
+
break
|
| 239 |
+
start = end - 100
|
| 240 |
+
|
| 241 |
+
except Exception as e:
|
| 242 |
+
print(f"Body extraction failed: {e}")
|
| 243 |
+
|
| 244 |
+
return page_body_data
|
| 245 |
+
|
| 246 |
+
def load_pdf_with_metadata(pdf_path):
|
| 247 |
+
"""Extracts page-specific information from a PDF file"""
|
| 248 |
+
log(f"Starting PDF page-wise processing: {pdf_path}")
|
| 249 |
+
start = time.time()
|
| 250 |
+
|
| 251 |
+
# First, check the actual number of pages using PyPDFLoader
|
| 252 |
+
try:
|
| 253 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 254 |
+
loader = PyPDFLoader(pdf_path)
|
| 255 |
+
pdf_pages = loader.load()
|
| 256 |
+
actual_total_pages = len(pdf_pages)
|
| 257 |
+
log(f"Actual page count as verified by PyPDFLoader: {actual_total_pages}")
|
| 258 |
+
except Exception as e:
|
| 259 |
+
log(f"PyPDFLoader page count verification failed: {e}")
|
| 260 |
+
actual_total_pages = 1
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
page_tables = extract_tables_with_pdfplumber(pdf_path)
|
| 264 |
+
except Exception as e:
|
| 265 |
+
page_tables = {}
|
| 266 |
+
print(f"Table extraction failed: {e}")
|
| 267 |
+
|
| 268 |
+
try:
|
| 269 |
+
page_ocr = extract_images_with_ocr(pdf_path)
|
| 270 |
+
except Exception as e:
|
| 271 |
+
page_ocr = {}
|
| 272 |
+
print(f"Image OCR failed: {e}")
|
| 273 |
+
|
| 274 |
+
try:
|
| 275 |
+
page_body = extract_body_text_with_pages(pdf_path)
|
| 276 |
+
except Exception as e:
|
| 277 |
+
page_body = {}
|
| 278 |
+
print(f"Body extraction failed: {e}")
|
| 279 |
+
|
| 280 |
+
duration = time.time() - start
|
| 281 |
+
log(f"PDF page-wise processing complete: {pdf_path} โฑ๏ธ {duration:.2f}s")
|
| 282 |
+
|
| 283 |
+
# Set the total number of pages based on the actual number of pages
|
| 284 |
+
all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys())
|
| 285 |
+
if all_pages:
|
| 286 |
+
max_extracted_page = max(all_pages)
|
| 287 |
+
# Use the greater of the actual and extracted page numbers
|
| 288 |
+
total_pages = max(actual_total_pages, max_extracted_page)
|
| 289 |
else:
|
| 290 |
+
total_pages = actual_total_pages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
+
log(f"Final total page count set to: {total_pages}")
|
|
|
|
| 293 |
|
| 294 |
+
docs = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
+
for page_num in sorted(all_pages):
|
| 297 |
+
if page_num in page_tables and page_tables[page_num].strip():
|
| 298 |
+
docs.append(Document(
|
| 299 |
+
page_content=clean_text(apply_corrections(page_tables[page_num])),
|
| 300 |
+
metadata={
|
| 301 |
+
"source": pdf_path,
|
| 302 |
+
"filename": os.path.basename(pdf_path),
|
| 303 |
+
"type": "table",
|
| 304 |
+
"page": page_num,
|
| 305 |
+
"total_pages": total_pages
|
| 306 |
+
}
|
| 307 |
+
))
|
| 308 |
+
log(f"Page {page_num}: Table extraction complete")
|
| 309 |
|
| 310 |
+
if page_num in page_body and page_body[page_num].strip():
|
| 311 |
+
docs.append(Document(
|
| 312 |
+
page_content=clean_text(apply_corrections(page_body[page_num])),
|
| 313 |
+
metadata={
|
| 314 |
+
"source": pdf_path,
|
| 315 |
+
"filename": os.path.basename(pdf_path),
|
| 316 |
+
"type": "body",
|
| 317 |
+
"page": page_num,
|
| 318 |
+
"total_pages": total_pages
|
| 319 |
+
}
|
| 320 |
+
))
|
| 321 |
+
log(f"Page {page_num}: Body extraction complete")
|
| 322 |
|
| 323 |
+
if page_num in page_ocr and page_ocr[page_num].strip():
|
| 324 |
+
docs.append(Document(
|
| 325 |
+
page_content=clean_text(apply_corrections(page_ocr[page_num])),
|
| 326 |
+
metadata={
|
| 327 |
+
"source": pdf_path,
|
| 328 |
+
"filename": os.path.basename(pdf_path),
|
| 329 |
+
"type": "ocr",
|
| 330 |
+
"page": page_num,
|
| 331 |
+
"total_pages": total_pages
|
| 332 |
+
}
|
| 333 |
+
))
|
| 334 |
+
log(f"Page {page_num}: OCR extraction complete")
|
| 335 |
+
|
| 336 |
+
if not docs:
|
| 337 |
+
docs.append(Document(
|
| 338 |
+
page_content="[Content extraction failed]",
|
| 339 |
+
metadata={
|
| 340 |
+
"source": pdf_path,
|
| 341 |
+
"filename": os.path.basename(pdf_path),
|
| 342 |
+
"type": "error",
|
| 343 |
+
"page": 1,
|
| 344 |
+
"total_pages": total_pages
|
| 345 |
}
|
| 346 |
+
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
+
# Print summary of page information
|
| 349 |
+
if docs:
|
| 350 |
+
page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')]
|
| 351 |
+
if page_numbers:
|
| 352 |
+
log(f"Extracted page range: {min(page_numbers)} ~ {max(page_numbers)}")
|
| 353 |
+
|
| 354 |
+
log(f"PDF documents with extracted pages: {len(docs)} documents (total {total_pages} pages)")
|
| 355 |
+
return docs
|
| 356 |
+
|
| 357 |
+
# --------------------------------
|
| 358 |
+
# Document Loading and Splitting
|
| 359 |
+
# --------------------------------
|
| 360 |
+
|
| 361 |
+
def load_documents(folder_path):
|
| 362 |
+
documents = []
|
| 363 |
+
|
| 364 |
+
for file in glob.glob(os.path.join(folder_path, "*.hwpx")):
|
| 365 |
+
log(f"HWPX file found: {file}")
|
| 366 |
+
docs = load_hwpx(file)
|
| 367 |
+
documents.extend(docs)
|
| 368 |
+
|
| 369 |
+
for file in glob.glob(os.path.join(folder_path, "*.pdf")):
|
| 370 |
+
log(f"PDF file found: {file}")
|
| 371 |
+
documents.extend(load_pdf_with_metadata(file))
|
| 372 |
+
|
| 373 |
+
log(f"Document loading complete! Total documents: {len(documents)}")
|
| 374 |
+
return documents
|
| 375 |
+
|
| 376 |
+
def split_documents(documents, chunk_size=800, chunk_overlap=100):
|
| 377 |
+
log("Starting chunk splitting")
|
| 378 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 379 |
+
chunk_size=chunk_size,
|
| 380 |
+
chunk_overlap=chunk_overlap,
|
| 381 |
+
length_function=len
|
| 382 |
+
)
|
| 383 |
+
chunks = []
|
| 384 |
+
for doc in documents:
|
| 385 |
+
split = splitter.split_text(doc.page_content)
|
| 386 |
+
for i, chunk in enumerate(split):
|
| 387 |
+
enriched_chunk = f"passage: {chunk}"
|
| 388 |
+
chunks.append(Document(
|
| 389 |
+
page_content=enriched_chunk,
|
| 390 |
+
metadata={**doc.metadata, "chunk_index": i}
|
| 391 |
+
))
|
| 392 |
+
log(f"Chunk splitting complete: Created {len(chunks)} chunks")
|
| 393 |
+
return chunks
|
| 394 |
+
|
| 395 |
+
# --------------------------------
|
| 396 |
+
# Main Execution
|
| 397 |
+
# --------------------------------
|
| 398 |
|
| 399 |
if __name__ == "__main__":
|
| 400 |
+
folder = "dataset_test"
|
| 401 |
+
log("PyMuPDF-based document processing started")
|
| 402 |
+
docs = load_documents(folder)
|
| 403 |
+
log("Document loading complete")
|
| 404 |
+
|
| 405 |
+
# Page information check
|
| 406 |
+
log("Page information summary:")
|
| 407 |
+
page_info = {}
|
| 408 |
+
for doc in docs:
|
| 409 |
+
source = doc.metadata.get('source', 'unknown')
|
| 410 |
+
page = doc.metadata.get('page', 'unknown')
|
| 411 |
+
doc_type = doc.metadata.get('type', 'unknown')
|
| 412 |
+
|
| 413 |
+
if source not in page_info:
|
| 414 |
+
page_info[source] = {'pages': set(), 'types': set()}
|
| 415 |
+
page_info[source]['pages'].add(page)
|
| 416 |
+
page_info[source]['types'].add(doc_type)
|
| 417 |
+
|
| 418 |
+
for source, info in page_info.items():
|
| 419 |
+
max_page = max(info['pages']) if info['pages'] and isinstance(max(info['pages']), int) else 'unknown'
|
| 420 |
+
log(f" {os.path.basename(source)}: {max_page} pages, type: {info['types']}")
|
| 421 |
+
|
| 422 |
+
chunks = split_documents(docs)
|
| 423 |
+
log("E5-Large-Instruct embedding preparation")
|
| 424 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 425 |
+
model_name="intfloat/e5-large-v2",
|
| 426 |
+
model_kwargs={"device": "cuda"}
|
| 427 |
+
)
|
| 428 |
|
| 429 |
+
vectorstore = FAISS.from_documents(chunks, embedding_model)
|
| 430 |
+
vectorstore.save_local("vector_db")
|
| 431 |
|
| 432 |
+
log(f"Total number of documents: {len(docs)}")
|
| 433 |
+
log(f"Total number of chunks: {len(chunks)}")
|
| 434 |
+
log("FAISS save complete: vector_db")
|
| 435 |
+
|
| 436 |
+
# Sample output with page information
|
| 437 |
+
log("\nSample including actual page information:")
|
| 438 |
+
for i, chunk in enumerate(chunks[:5]):
|
| 439 |
+
meta = chunk.metadata
|
| 440 |
+
log(f" Chunk {i+1}: {meta.get('type')} | Page {meta.get('page')} | {os.path.basename(meta.get('source', 'unknown'))}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|