Spaces:
Build error
Build error
Update document_processor_image_test.py
Browse files- document_processor_image_test.py +66 -66
document_processor_image_test.py
CHANGED
|
@@ -9,16 +9,16 @@ from langchain_core.documents import Document
|
|
| 9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain_community.vectorstores import FAISS
|
| 11 |
|
| 12 |
-
# PyMuPDF
|
| 13 |
try:
|
| 14 |
import fitz # PyMuPDF
|
| 15 |
PYMUPDF_AVAILABLE = True
|
| 16 |
-
print("β
PyMuPDF
|
| 17 |
except ImportError:
|
| 18 |
PYMUPDF_AVAILABLE = False
|
| 19 |
-
print("β οΈ PyMuPDF
|
| 20 |
|
| 21 |
-
# PDF
|
| 22 |
import pytesseract
|
| 23 |
from PIL import Image
|
| 24 |
from pdf2image import convert_from_path
|
|
@@ -26,14 +26,14 @@ import pdfplumber
|
|
| 26 |
from pymupdf4llm import LlamaMarkdownReader
|
| 27 |
|
| 28 |
# --------------------------------
|
| 29 |
-
#
|
| 30 |
# --------------------------------
|
| 31 |
|
| 32 |
def log(msg):
|
| 33 |
print(f"[{time.strftime('%H:%M:%S')}] {msg}")
|
| 34 |
|
| 35 |
# --------------------------------
|
| 36 |
-
#
|
| 37 |
# --------------------------------
|
| 38 |
|
| 39 |
def clean_text(text):
|
|
@@ -41,7 +41,7 @@ def clean_text(text):
|
|
| 41 |
|
| 42 |
def apply_corrections(text):
|
| 43 |
corrections = {
|
| 44 |
-
'ΒΊΒ©': '
|
| 45 |
'Γ’β¬β’': "'", 'Γ’β¬Ε': '"', 'Γ’β¬': '"'
|
| 46 |
}
|
| 47 |
for k, v in corrections.items():
|
|
@@ -49,16 +49,16 @@ def apply_corrections(text):
|
|
| 49 |
return text
|
| 50 |
|
| 51 |
# --------------------------------
|
| 52 |
-
# HWPX
|
| 53 |
# --------------------------------
|
| 54 |
|
| 55 |
def load_hwpx(file_path):
|
| 56 |
-
"""HWPX
|
| 57 |
import zipfile
|
| 58 |
import xml.etree.ElementTree as ET
|
| 59 |
import chardet
|
| 60 |
|
| 61 |
-
log(f"π₯ HWPX
|
| 62 |
start = time.time()
|
| 63 |
documents = []
|
| 64 |
|
|
@@ -67,9 +67,9 @@ def load_hwpx(file_path):
|
|
| 67 |
file_list = zip_ref.namelist()
|
| 68 |
section_files = [f for f in file_list
|
| 69 |
if f.startswith('Contents/section') and f.endswith('.xml')]
|
| 70 |
-
section_files.sort() # section0.xml, section1.xml
|
| 71 |
|
| 72 |
-
log(f"π
|
| 73 |
|
| 74 |
for section_idx, section_file in enumerate(section_files):
|
| 75 |
with zip_ref.open(section_file) as xml_file:
|
|
@@ -83,14 +83,14 @@ def load_hwpx(file_path):
|
|
| 83 |
tree = ET.ElementTree(ET.fromstring(text))
|
| 84 |
root = tree.getroot()
|
| 85 |
|
| 86 |
-
#
|
| 87 |
t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't']
|
| 88 |
body_text = ""
|
| 89 |
for elem in t_elements:
|
| 90 |
if elem.text:
|
| 91 |
body_text += clean_text(elem.text) + " "
|
| 92 |
|
| 93 |
-
# page
|
| 94 |
page_value = ""
|
| 95 |
|
| 96 |
if body_text.strip():
|
|
@@ -104,9 +104,9 @@ def load_hwpx(file_path):
|
|
| 104 |
"total_sections": len(section_files)
|
| 105 |
}
|
| 106 |
))
|
| 107 |
-
log(f"β
|
| 108 |
|
| 109 |
-
#
|
| 110 |
table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table']
|
| 111 |
if table_elements:
|
| 112 |
table_text = ""
|
|
@@ -136,12 +136,12 @@ def load_hwpx(file_path):
|
|
| 136 |
"total_sections": len(section_files)
|
| 137 |
}
|
| 138 |
))
|
| 139 |
-
log(f"π
|
| 140 |
|
| 141 |
-
#
|
| 142 |
if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']:
|
| 143 |
documents.append(Document(
|
| 144 |
-
page_content="[
|
| 145 |
metadata={
|
| 146 |
"source": file_path,
|
| 147 |
"filename": os.path.basename(file_path),
|
|
@@ -150,22 +150,22 @@ def load_hwpx(file_path):
|
|
| 150 |
"total_sections": len(section_files)
|
| 151 |
}
|
| 152 |
))
|
| 153 |
-
log(f"πΌοΈ
|
| 154 |
|
| 155 |
except Exception as e:
|
| 156 |
-
log(f"β HWPX
|
| 157 |
|
| 158 |
duration = time.time() - start
|
| 159 |
|
| 160 |
-
#
|
| 161 |
if documents:
|
| 162 |
-
log(f"π
|
| 163 |
|
| 164 |
-
log(f"β
HWPX
|
| 165 |
return documents
|
| 166 |
|
| 167 |
# --------------------------------
|
| 168 |
-
# PDF
|
| 169 |
# --------------------------------
|
| 170 |
|
| 171 |
def run_ocr_on_image(image: Image.Image, lang='kor+eng'):
|
|
@@ -182,7 +182,7 @@ def extract_images_with_ocr(pdf_path, lang='kor+eng'):
|
|
| 182 |
page_ocr_data[page_num] = text.strip()
|
| 183 |
return page_ocr_data
|
| 184 |
except Exception as e:
|
| 185 |
-
print(f"β
|
| 186 |
return {}
|
| 187 |
|
| 188 |
def extract_tables_with_pdfplumber(pdf_path):
|
|
@@ -203,7 +203,7 @@ def extract_tables_with_pdfplumber(pdf_path):
|
|
| 203 |
page_table_data[page_num] = table_text.strip()
|
| 204 |
return page_table_data
|
| 205 |
except Exception as e:
|
| 206 |
-
print(f"β
|
| 207 |
return {}
|
| 208 |
|
| 209 |
def extract_body_text_with_pages(pdf_path):
|
|
@@ -239,57 +239,57 @@ def extract_body_text_with_pages(pdf_path):
|
|
| 239 |
start = end - 100
|
| 240 |
|
| 241 |
except Exception as e:
|
| 242 |
-
print(f"β
|
| 243 |
|
| 244 |
return page_body_data
|
| 245 |
|
| 246 |
def load_pdf_with_metadata(pdf_path):
|
| 247 |
-
"""
|
| 248 |
-
log(f"π PDF
|
| 249 |
start = time.time()
|
| 250 |
|
| 251 |
-
#
|
| 252 |
try:
|
| 253 |
from langchain_community.document_loaders import PyPDFLoader
|
| 254 |
loader = PyPDFLoader(pdf_path)
|
| 255 |
pdf_pages = loader.load()
|
| 256 |
actual_total_pages = len(pdf_pages)
|
| 257 |
-
log(f"π
|
| 258 |
except Exception as e:
|
| 259 |
-
log(f"β PyPDFLoader
|
| 260 |
actual_total_pages = 1
|
| 261 |
|
| 262 |
try:
|
| 263 |
page_tables = extract_tables_with_pdfplumber(pdf_path)
|
| 264 |
except Exception as e:
|
| 265 |
page_tables = {}
|
| 266 |
-
print(f"β
|
| 267 |
|
| 268 |
try:
|
| 269 |
page_ocr = extract_images_with_ocr(pdf_path)
|
| 270 |
except Exception as e:
|
| 271 |
page_ocr = {}
|
| 272 |
-
print(f"β
|
| 273 |
|
| 274 |
try:
|
| 275 |
page_body = extract_body_text_with_pages(pdf_path)
|
| 276 |
except Exception as e:
|
| 277 |
page_body = {}
|
| 278 |
-
print(f"β
|
| 279 |
|
| 280 |
duration = time.time() - start
|
| 281 |
-
log(f"β
PDF
|
| 282 |
|
| 283 |
-
#
|
| 284 |
all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys())
|
| 285 |
if all_pages:
|
| 286 |
max_extracted_page = max(all_pages)
|
| 287 |
-
#
|
| 288 |
total_pages = max(actual_total_pages, max_extracted_page)
|
| 289 |
else:
|
| 290 |
total_pages = actual_total_pages
|
| 291 |
|
| 292 |
-
log(f"π
|
| 293 |
|
| 294 |
docs = []
|
| 295 |
|
|
@@ -305,7 +305,7 @@ def load_pdf_with_metadata(pdf_path):
|
|
| 305 |
"total_pages": total_pages
|
| 306 |
}
|
| 307 |
))
|
| 308 |
-
log(f"π
|
| 309 |
|
| 310 |
if page_num in page_body and page_body[page_num].strip():
|
| 311 |
docs.append(Document(
|
|
@@ -318,7 +318,7 @@ def load_pdf_with_metadata(pdf_path):
|
|
| 318 |
"total_pages": total_pages
|
| 319 |
}
|
| 320 |
))
|
| 321 |
-
log(f"π
|
| 322 |
|
| 323 |
if page_num in page_ocr and page_ocr[page_num].strip():
|
| 324 |
docs.append(Document(
|
|
@@ -331,11 +331,11 @@ def load_pdf_with_metadata(pdf_path):
|
|
| 331 |
"total_pages": total_pages
|
| 332 |
}
|
| 333 |
))
|
| 334 |
-
log(f"πΌοΈ
|
| 335 |
|
| 336 |
if not docs:
|
| 337 |
docs.append(Document(
|
| 338 |
-
page_content="[
|
| 339 |
metadata={
|
| 340 |
"source": pdf_path,
|
| 341 |
"filename": os.path.basename(pdf_path),
|
|
@@ -345,36 +345,36 @@ def load_pdf_with_metadata(pdf_path):
|
|
| 345 |
}
|
| 346 |
))
|
| 347 |
|
| 348 |
-
#
|
| 349 |
if docs:
|
| 350 |
page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')]
|
| 351 |
if page_numbers:
|
| 352 |
-
log(f"π
|
| 353 |
|
| 354 |
-
log(f"π
|
| 355 |
return docs
|
| 356 |
|
| 357 |
# --------------------------------
|
| 358 |
-
#
|
| 359 |
# --------------------------------
|
| 360 |
|
| 361 |
def load_documents(folder_path):
|
| 362 |
documents = []
|
| 363 |
|
| 364 |
for file in glob.glob(os.path.join(folder_path, "*.hwpx")):
|
| 365 |
-
log(f"π HWPX
|
| 366 |
docs = load_hwpx(file)
|
| 367 |
documents.extend(docs)
|
| 368 |
|
| 369 |
for file in glob.glob(os.path.join(folder_path, "*.pdf")):
|
| 370 |
-
log(f"π PDF
|
| 371 |
documents.extend(load_pdf_with_metadata(file))
|
| 372 |
|
| 373 |
-
log(f"π
|
| 374 |
return documents
|
| 375 |
|
| 376 |
def split_documents(documents, chunk_size=800, chunk_overlap=100):
|
| 377 |
-
log("πͺ
|
| 378 |
splitter = RecursiveCharacterTextSplitter(
|
| 379 |
chunk_size=chunk_size,
|
| 380 |
chunk_overlap=chunk_overlap,
|
|
@@ -389,21 +389,21 @@ def split_documents(documents, chunk_size=800, chunk_overlap=100):
|
|
| 389 |
page_content=enriched_chunk,
|
| 390 |
metadata={**doc.metadata, "chunk_index": i}
|
| 391 |
))
|
| 392 |
-
log(f"β
|
| 393 |
return chunks
|
| 394 |
|
| 395 |
# --------------------------------
|
| 396 |
-
#
|
| 397 |
# --------------------------------
|
| 398 |
|
| 399 |
if __name__ == "__main__":
|
| 400 |
folder = "dataset_test"
|
| 401 |
-
log("π PyMuPDF
|
| 402 |
docs = load_documents(folder)
|
| 403 |
-
log("π¦
|
| 404 |
|
| 405 |
-
#
|
| 406 |
-
log("π
|
| 407 |
page_info = {}
|
| 408 |
for doc in docs:
|
| 409 |
source = doc.metadata.get('source', 'unknown')
|
|
@@ -417,10 +417,10 @@ if __name__ == "__main__":
|
|
| 417 |
|
| 418 |
for source, info in page_info.items():
|
| 419 |
max_page = max(info['pages']) if info['pages'] and isinstance(max(info['pages']), int) else 'unknown'
|
| 420 |
-
log(f" π {os.path.basename(source)}: {max_page}
|
| 421 |
|
| 422 |
chunks = split_documents(docs)
|
| 423 |
-
log("π‘ E5-Large-Instruct
|
| 424 |
embedding_model = HuggingFaceEmbeddings(
|
| 425 |
model_name="intfloat/e5-large-v2",
|
| 426 |
model_kwargs={"device": "cuda"}
|
|
@@ -429,12 +429,12 @@ if __name__ == "__main__":
|
|
| 429 |
vectorstore = FAISS.from_documents(chunks, embedding_model)
|
| 430 |
vectorstore.save_local("vector_db")
|
| 431 |
|
| 432 |
-
log(f"π
|
| 433 |
-
log(f"π
|
| 434 |
-
log("β
FAISS
|
| 435 |
|
| 436 |
-
#
|
| 437 |
-
log("\nπ
|
| 438 |
for i, chunk in enumerate(chunks[:5]):
|
| 439 |
meta = chunk.metadata
|
| 440 |
-
log(f"
|
|
|
|
| 9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain_community.vectorstores import FAISS
|
| 11 |
|
| 12 |
+
# PyMuPDF library
|
| 13 |
try:
|
| 14 |
import fitz # PyMuPDF
|
| 15 |
PYMUPDF_AVAILABLE = True
|
| 16 |
+
print("β
PyMuPDF library available")
|
| 17 |
except ImportError:
|
| 18 |
PYMUPDF_AVAILABLE = False
|
| 19 |
+
print("β οΈ PyMuPDF library is not installed. Install with: pip install PyMuPDF")
|
| 20 |
|
| 21 |
+
# PDF processing utilities
|
| 22 |
import pytesseract
|
| 23 |
from PIL import Image
|
| 24 |
from pdf2image import convert_from_path
|
|
|
|
| 26 |
from pymupdf4llm import LlamaMarkdownReader
|
| 27 |
|
| 28 |
# --------------------------------
|
| 29 |
+
# Log Output
|
| 30 |
# --------------------------------
|
| 31 |
|
| 32 |
def log(msg):
|
| 33 |
print(f"[{time.strftime('%H:%M:%S')}] {msg}")
|
| 34 |
|
| 35 |
# --------------------------------
|
| 36 |
+
# Text Cleaning Function
|
| 37 |
# --------------------------------
|
| 38 |
|
| 39 |
def clean_text(text):
|
|
|
|
| 41 |
|
| 42 |
def apply_corrections(text):
|
| 43 |
corrections = {
|
| 44 |
+
'ΒΊΒ©': 'info', 'Γ': 'of', 'Β½': 'operation', 'Γ': '', 'Β©': '',
|
| 45 |
'Γ’β¬β’': "'", 'Γ’β¬Ε': '"', 'Γ’β¬': '"'
|
| 46 |
}
|
| 47 |
for k, v in corrections.items():
|
|
|
|
| 49 |
return text
|
| 50 |
|
| 51 |
# --------------------------------
|
| 52 |
+
# HWPX Processing (Section-wise Processing Only)
|
| 53 |
# --------------------------------
|
| 54 |
|
| 55 |
def load_hwpx(file_path):
|
| 56 |
+
"""Loading HWPX file (using XML parsing method only)"""
|
| 57 |
import zipfile
|
| 58 |
import xml.etree.ElementTree as ET
|
| 59 |
import chardet
|
| 60 |
|
| 61 |
+
log(f"π₯ Starting HWPX section-wise processing: {file_path}")
|
| 62 |
start = time.time()
|
| 63 |
documents = []
|
| 64 |
|
|
|
|
| 67 |
file_list = zip_ref.namelist()
|
| 68 |
section_files = [f for f in file_list
|
| 69 |
if f.startswith('Contents/section') and f.endswith('.xml')]
|
| 70 |
+
section_files.sort() # Sort by section0.xml, section1.xml order
|
| 71 |
|
| 72 |
+
log(f"π Found section files: {len(section_files)}")
|
| 73 |
|
| 74 |
for section_idx, section_file in enumerate(section_files):
|
| 75 |
with zip_ref.open(section_file) as xml_file:
|
|
|
|
| 83 |
tree = ET.ElementTree(ET.fromstring(text))
|
| 84 |
root = tree.getroot()
|
| 85 |
|
| 86 |
+
# Find text without namespace
|
| 87 |
t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't']
|
| 88 |
body_text = ""
|
| 89 |
for elem in t_elements:
|
| 90 |
if elem.text:
|
| 91 |
body_text += clean_text(elem.text) + " "
|
| 92 |
|
| 93 |
+
# Set page metadata to empty
|
| 94 |
page_value = ""
|
| 95 |
|
| 96 |
if body_text.strip():
|
|
|
|
| 104 |
"total_sections": len(section_files)
|
| 105 |
}
|
| 106 |
))
|
| 107 |
+
log(f"β
Section text extraction complete (chars: {len(body_text)})")
|
| 108 |
|
| 109 |
+
# Find tables
|
| 110 |
table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table']
|
| 111 |
if table_elements:
|
| 112 |
table_text = ""
|
|
|
|
| 136 |
"total_sections": len(section_files)
|
| 137 |
}
|
| 138 |
))
|
| 139 |
+
log(f"π Table extraction complete")
|
| 140 |
|
| 141 |
+
# Find images
|
| 142 |
if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']:
|
| 143 |
documents.append(Document(
|
| 144 |
+
page_content="[Image included]",
|
| 145 |
metadata={
|
| 146 |
"source": file_path,
|
| 147 |
"filename": os.path.basename(file_path),
|
|
|
|
| 150 |
"total_sections": len(section_files)
|
| 151 |
}
|
| 152 |
))
|
| 153 |
+
log(f"πΌοΈ Image found")
|
| 154 |
|
| 155 |
except Exception as e:
|
| 156 |
+
log(f"β HWPX processing error: {e}")
|
| 157 |
|
| 158 |
duration = time.time() - start
|
| 159 |
|
| 160 |
+
# Print summary of document information
|
| 161 |
if documents:
|
| 162 |
+
log(f"π Number of extracted documents: {len(documents)}")
|
| 163 |
|
| 164 |
+
log(f"β
HWPX processing complete: {file_path} β±οΈ {duration:.2f}s, total {len(documents)} documents")
|
| 165 |
return documents
|
| 166 |
|
| 167 |
# --------------------------------
|
| 168 |
+
# PDF Processing Functions (same as before)
|
| 169 |
# --------------------------------
|
| 170 |
|
| 171 |
def run_ocr_on_image(image: Image.Image, lang='kor+eng'):
|
|
|
|
| 182 |
page_ocr_data[page_num] = text.strip()
|
| 183 |
return page_ocr_data
|
| 184 |
except Exception as e:
|
| 185 |
+
print(f"β Image OCR failed: {e}")
|
| 186 |
return {}
|
| 187 |
|
| 188 |
def extract_tables_with_pdfplumber(pdf_path):
|
|
|
|
| 203 |
page_table_data[page_num] = table_text.strip()
|
| 204 |
return page_table_data
|
| 205 |
except Exception as e:
|
| 206 |
+
print(f"β Table extraction failed: {e}")
|
| 207 |
return {}
|
| 208 |
|
| 209 |
def extract_body_text_with_pages(pdf_path):
|
|
|
|
| 239 |
start = end - 100
|
| 240 |
|
| 241 |
except Exception as e:
|
| 242 |
+
print(f"β Body extraction failed: {e}")
|
| 243 |
|
| 244 |
return page_body_data
|
| 245 |
|
| 246 |
def load_pdf_with_metadata(pdf_path):
|
| 247 |
+
"""Extracts page-specific information from a PDF file"""
|
| 248 |
+
log(f"π Starting PDF page-wise processing: {pdf_path}")
|
| 249 |
start = time.time()
|
| 250 |
|
| 251 |
+
# First, check the actual number of pages using PyPDFLoader
|
| 252 |
try:
|
| 253 |
from langchain_community.document_loaders import PyPDFLoader
|
| 254 |
loader = PyPDFLoader(pdf_path)
|
| 255 |
pdf_pages = loader.load()
|
| 256 |
actual_total_pages = len(pdf_pages)
|
| 257 |
+
log(f"π Actual page count as verified by PyPDFLoader: {actual_total_pages}")
|
| 258 |
except Exception as e:
|
| 259 |
+
log(f"β PyPDFLoader page count verification failed: {e}")
|
| 260 |
actual_total_pages = 1
|
| 261 |
|
| 262 |
try:
|
| 263 |
page_tables = extract_tables_with_pdfplumber(pdf_path)
|
| 264 |
except Exception as e:
|
| 265 |
page_tables = {}
|
| 266 |
+
print(f"β Table extraction failed: {e}")
|
| 267 |
|
| 268 |
try:
|
| 269 |
page_ocr = extract_images_with_ocr(pdf_path)
|
| 270 |
except Exception as e:
|
| 271 |
page_ocr = {}
|
| 272 |
+
print(f"β Image OCR failed: {e}")
|
| 273 |
|
| 274 |
try:
|
| 275 |
page_body = extract_body_text_with_pages(pdf_path)
|
| 276 |
except Exception as e:
|
| 277 |
page_body = {}
|
| 278 |
+
print(f"β Body extraction failed: {e}")
|
| 279 |
|
| 280 |
duration = time.time() - start
|
| 281 |
+
log(f"β
PDF page-wise processing complete: {pdf_path} β±οΈ {duration:.2f}s")
|
| 282 |
|
| 283 |
+
# Set the total number of pages based on the actual number of pages
|
| 284 |
all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys())
|
| 285 |
if all_pages:
|
| 286 |
max_extracted_page = max(all_pages)
|
| 287 |
+
# Use the greater of the actual and extracted page numbers
|
| 288 |
total_pages = max(actual_total_pages, max_extracted_page)
|
| 289 |
else:
|
| 290 |
total_pages = actual_total_pages
|
| 291 |
|
| 292 |
+
log(f"π Final total page count set to: {total_pages}")
|
| 293 |
|
| 294 |
docs = []
|
| 295 |
|
|
|
|
| 305 |
"total_pages": total_pages
|
| 306 |
}
|
| 307 |
))
|
| 308 |
+
log(f"π Page {page_num}: Table extraction complete")
|
| 309 |
|
| 310 |
if page_num in page_body and page_body[page_num].strip():
|
| 311 |
docs.append(Document(
|
|
|
|
| 318 |
"total_pages": total_pages
|
| 319 |
}
|
| 320 |
))
|
| 321 |
+
log(f"π Page {page_num}: Body extraction complete")
|
| 322 |
|
| 323 |
if page_num in page_ocr and page_ocr[page_num].strip():
|
| 324 |
docs.append(Document(
|
|
|
|
| 331 |
"total_pages": total_pages
|
| 332 |
}
|
| 333 |
))
|
| 334 |
+
log(f"πΌοΈ Page {page_num}: OCR extraction complete")
|
| 335 |
|
| 336 |
if not docs:
|
| 337 |
docs.append(Document(
|
| 338 |
+
page_content="[Content extraction failed]",
|
| 339 |
metadata={
|
| 340 |
"source": pdf_path,
|
| 341 |
"filename": os.path.basename(pdf_path),
|
|
|
|
| 345 |
}
|
| 346 |
))
|
| 347 |
|
| 348 |
+
# Print summary of page information
|
| 349 |
if docs:
|
| 350 |
page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')]
|
| 351 |
if page_numbers:
|
| 352 |
+
log(f"π Extracted page range: {min(page_numbers)} ~ {max(page_numbers)}")
|
| 353 |
|
| 354 |
+
log(f"π PDF documents with extracted pages: {len(docs)} documents (total {total_pages} pages)")
|
| 355 |
return docs
|
| 356 |
|
| 357 |
# --------------------------------
|
| 358 |
+
# Document Loading and Splitting
|
| 359 |
# --------------------------------
|
| 360 |
|
| 361 |
def load_documents(folder_path):
|
| 362 |
documents = []
|
| 363 |
|
| 364 |
for file in glob.glob(os.path.join(folder_path, "*.hwpx")):
|
| 365 |
+
log(f"π HWPX file found: {file}")
|
| 366 |
docs = load_hwpx(file)
|
| 367 |
documents.extend(docs)
|
| 368 |
|
| 369 |
for file in glob.glob(os.path.join(folder_path, "*.pdf")):
|
| 370 |
+
log(f"π PDF file found: {file}")
|
| 371 |
documents.extend(load_pdf_with_metadata(file))
|
| 372 |
|
| 373 |
+
log(f"π Document loading complete! Total documents: {len(documents)}")
|
| 374 |
return documents
|
| 375 |
|
| 376 |
def split_documents(documents, chunk_size=800, chunk_overlap=100):
|
| 377 |
+
log("πͺ Starting chunk splitting")
|
| 378 |
splitter = RecursiveCharacterTextSplitter(
|
| 379 |
chunk_size=chunk_size,
|
| 380 |
chunk_overlap=chunk_overlap,
|
|
|
|
| 389 |
page_content=enriched_chunk,
|
| 390 |
metadata={**doc.metadata, "chunk_index": i}
|
| 391 |
))
|
| 392 |
+
log(f"β
Chunk splitting complete: Created {len(chunks)} chunks")
|
| 393 |
return chunks
|
| 394 |
|
| 395 |
# --------------------------------
|
| 396 |
+
# Main Execution
|
| 397 |
# --------------------------------
|
| 398 |
|
| 399 |
if __name__ == "__main__":
|
| 400 |
folder = "dataset_test"
|
| 401 |
+
log("π PyMuPDF-based document processing started")
|
| 402 |
docs = load_documents(folder)
|
| 403 |
+
log("π¦ Document loading complete")
|
| 404 |
|
| 405 |
+
# Page information check
|
| 406 |
+
log("π Page information summary:")
|
| 407 |
page_info = {}
|
| 408 |
for doc in docs:
|
| 409 |
source = doc.metadata.get('source', 'unknown')
|
|
|
|
| 417 |
|
| 418 |
for source, info in page_info.items():
|
| 419 |
max_page = max(info['pages']) if info['pages'] and isinstance(max(info['pages']), int) else 'unknown'
|
| 420 |
+
log(f" π {os.path.basename(source)}: {max_page} pages, type: {info['types']}")
|
| 421 |
|
| 422 |
chunks = split_documents(docs)
|
| 423 |
+
log("π‘ E5-Large-Instruct embedding preparation")
|
| 424 |
embedding_model = HuggingFaceEmbeddings(
|
| 425 |
model_name="intfloat/e5-large-v2",
|
| 426 |
model_kwargs={"device": "cuda"}
|
|
|
|
| 429 |
vectorstore = FAISS.from_documents(chunks, embedding_model)
|
| 430 |
vectorstore.save_local("vector_db")
|
| 431 |
|
| 432 |
+
log(f"π Total number of documents: {len(docs)}")
|
| 433 |
+
log(f"π Total number of chunks: {len(chunks)}")
|
| 434 |
+
log("β
FAISS save complete: vector_db")
|
| 435 |
|
| 436 |
+
# Sample output with page information
|
| 437 |
+
log("\nπ Sample including actual page information:")
|
| 438 |
for i, chunk in enumerate(chunks[:5]):
|
| 439 |
meta = chunk.metadata
|
| 440 |
+
log(f" Chunk {i+1}: {meta.get('type')} | Page {meta.get('page')} | {os.path.basename(meta.get('source', 'unknown'))}")
|