Spaces:
Runtime error
Runtime error
Update vector_store_test.py
Browse files- vector_store_test.py +34 -38
vector_store_test.py
CHANGED
@@ -1,26 +1,23 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
|
4 |
-
"""
|
5 |
-
๋ฒกํฐ ์คํ ์ด ๋ชจ๋: ๋ฌธ์ ์๋ฒ ๋ฉ ์์ฑ ๋ฐ ๋ฒกํฐ ์คํ ์ด ๊ตฌ์ถ
|
6 |
-
๋ฐฐ์น ์ฒ๋ฆฌ ์ ์ฉ + ์ฒญํฌ ๊ธธ์ด ํ์ธ ์ถ๊ฐ
|
7 |
-
"""
|
8 |
-
|
9 |
import os
|
|
|
|
|
|
|
10 |
import argparse
|
11 |
import logging
|
12 |
-
from
|
|
|
|
|
|
|
13 |
from langchain_community.vectorstores import FAISS
|
14 |
-
from
|
15 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
16 |
-
from e5_embeddings import E5Embeddings
|
17 |
|
18 |
-
#
|
19 |
logging.getLogger().setLevel(logging.ERROR)
|
20 |
|
|
|
21 |
def get_embeddings(model_name="intfloat/multilingual-e5-large-instruct", device="cuda"):
|
22 |
-
print(f"[INFO]
|
23 |
-
return
|
24 |
model_name=model_name,
|
25 |
model_kwargs={'device': device},
|
26 |
encode_kwargs={'normalize_embeddings': True}
|
@@ -28,31 +25,32 @@ def get_embeddings(model_name="intfloat/multilingual-e5-large-instruct", device=
|
|
28 |
|
29 |
def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch_size=4):
|
30 |
if not documents:
|
31 |
-
raise ValueError("
|
32 |
|
33 |
texts = [doc.page_content for doc in documents]
|
34 |
metadatas = [doc.metadata for doc in documents]
|
35 |
|
36 |
-
#
|
37 |
lengths = [len(t) for t in texts]
|
38 |
-
print(f"๐ก
|
39 |
-
print(f"๐ก
|
40 |
-
print(f"๐ก
|
41 |
|
42 |
-
#
|
43 |
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)]
|
44 |
metadata_batches = [metadatas[i:i + batch_size] for i in range(0, len(metadatas), batch_size)]
|
45 |
|
46 |
print(f"Processing {len(batches)} batches with size {batch_size}")
|
47 |
print(f"Initializing vector store with batch 1/{len(batches)}")
|
48 |
|
49 |
-
#
|
50 |
first_docs = [
|
51 |
Document(page_content=text, metadata=meta)
|
52 |
for text, meta in zip(batches[0], metadata_batches[0])
|
53 |
]
|
54 |
vectorstore = FAISS.from_documents(first_docs, embeddings)
|
55 |
|
|
|
56 |
for i in tqdm(range(1, len(batches)), desc="Processing batches"):
|
57 |
try:
|
58 |
docs_batch = [
|
@@ -83,39 +81,37 @@ def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch
|
|
83 |
|
84 |
def load_vector_store(embeddings, load_path="vector_db"):
|
85 |
if not os.path.exists(load_path):
|
86 |
-
raise FileNotFoundError(f"
|
87 |
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True)
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
-
parser = argparse.ArgumentParser(description="
|
91 |
-
parser.add_argument("--folder", type=str, default="final_dataset", help="
|
92 |
-
parser.add_argument("--save_path", type=str, default="vector_db", help="
|
93 |
-
parser.add_argument("--batch_size", type=int, default=4, help="
|
94 |
-
parser.add_argument("--model_name", type=str, default="intfloat/multilingual-e5-large-instruct", help="
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
args = parser.parse_args()
|
99 |
|
100 |
-
#
|
101 |
from document_processor_image_test import load_documents, split_documents
|
102 |
|
103 |
documents = load_documents(args.folder)
|
104 |
chunks = split_documents(documents, chunk_size=800, chunk_overlap=100)
|
105 |
|
106 |
-
print(f"[DEBUG]
|
107 |
-
print(f"[INFO]
|
108 |
|
109 |
try:
|
110 |
embeddings = get_embeddings(
|
111 |
model_name=args.model_name,
|
112 |
device=args.device
|
113 |
)
|
114 |
-
print(f"[DEBUG]
|
115 |
except Exception as e:
|
116 |
-
print(f"[ERROR]
|
117 |
import traceback; traceback.print_exc()
|
118 |
exit(1)
|
119 |
|
120 |
-
build_vector_store_batch(chunks, embeddings, args.save_path, args.batch_size)
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
+
import glob
|
4 |
+
import time
|
5 |
import argparse
|
6 |
import logging
|
7 |
+
from collections import defaultdict
|
8 |
+
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain_core.documents import Document
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
13 |
|
14 |
+
# Logging Configuration
|
15 |
logging.getLogger().setLevel(logging.ERROR)
|
16 |
|
17 |
+
# Embedding model loading
|
18 |
def get_embeddings(model_name="intfloat/multilingual-e5-large-instruct", device="cuda"):
|
19 |
+
print(f"[INFO] Embedding model device: {device}")
|
20 |
+
return HuggingFaceEmbeddings(
|
21 |
model_name=model_name,
|
22 |
model_kwargs={'device': device},
|
23 |
encode_kwargs={'normalize_embeddings': True}
|
|
|
25 |
|
26 |
def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch_size=4):
|
27 |
if not documents:
|
28 |
+
raise ValueError("No documents found. Check if documents were loaded correctly.")
|
29 |
|
30 |
texts = [doc.page_content for doc in documents]
|
31 |
metadatas = [doc.metadata for doc in documents]
|
32 |
|
33 |
+
# Print chunk lengths
|
34 |
lengths = [len(t) for t in texts]
|
35 |
+
print(f"๐ก Number of chunks: {len(texts)}")
|
36 |
+
print(f"๐ก Longest chunk length: {max(lengths)} chars")
|
37 |
+
print(f"๐ก Average chunk length: {sum(lengths) // len(lengths)} chars")
|
38 |
|
39 |
+
# Split into batches
|
40 |
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)]
|
41 |
metadata_batches = [metadatas[i:i + batch_size] for i in range(0, len(metadatas), batch_size)]
|
42 |
|
43 |
print(f"Processing {len(batches)} batches with size {batch_size}")
|
44 |
print(f"Initializing vector store with batch 1/{len(batches)}")
|
45 |
|
46 |
+
# Use from_documents
|
47 |
first_docs = [
|
48 |
Document(page_content=text, metadata=meta)
|
49 |
for text, meta in zip(batches[0], metadata_batches[0])
|
50 |
]
|
51 |
vectorstore = FAISS.from_documents(first_docs, embeddings)
|
52 |
|
53 |
+
# Add remaining batches
|
54 |
for i in tqdm(range(1, len(batches)), desc="Processing batches"):
|
55 |
try:
|
56 |
docs_batch = [
|
|
|
81 |
|
82 |
def load_vector_store(embeddings, load_path="vector_db"):
|
83 |
if not os.path.exists(load_path):
|
84 |
+
raise FileNotFoundError(f"Cannot find vector store: {load_path}")
|
85 |
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True)
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
+
parser = argparse.ArgumentParser(description="Builds a vector store")
|
89 |
+
parser.add_argument("--folder", type=str, default="final_dataset", help="Path to the folder containing the documents")
|
90 |
+
parser.add_argument("--save_path", type=str, default="vector_db", help="Path to save the vector store")
|
91 |
+
parser.add_argument("--batch_size", type=int, default=4, help="Batch size")
|
92 |
+
parser.add_argument("--model_name", type=str, default="intfloat/multilingual-e5-large-instruct", help="Name of the embedding model")
|
93 |
+
parser.add_argument("--device", type=str, default="cuda", help="Device to use ('cuda' or 'cpu' or 'cuda:0')") #Ermรถglicht cuda:0
|
94 |
+
|
|
|
95 |
args = parser.parse_args()
|
96 |
|
97 |
+
# Import the document processing module
|
98 |
from document_processor_image_test import load_documents, split_documents
|
99 |
|
100 |
documents = load_documents(args.folder)
|
101 |
chunks = split_documents(documents, chunk_size=800, chunk_overlap=100)
|
102 |
|
103 |
+
print(f"[DEBUG] Document loading and chunk splitting complete, entering embedding stage")
|
104 |
+
print(f"[INFO] Selected device: {args.device}")
|
105 |
|
106 |
try:
|
107 |
embeddings = get_embeddings(
|
108 |
model_name=args.model_name,
|
109 |
device=args.device
|
110 |
)
|
111 |
+
print(f"[DEBUG] Embedding model created")
|
112 |
except Exception as e:
|
113 |
+
print(f"[ERROR] Error creating embedding model: {e}")
|
114 |
import traceback; traceback.print_exc()
|
115 |
exit(1)
|
116 |
|
117 |
+
build_vector_store_batch(chunks, embeddings, args.save_path, args.batch_size)
|
|