File size: 13,507 Bytes
15094ac f415c95 58843c4 1778c9e f415c95 97c4991 f415c95 d7cd63b 97c4991 c670717 97c4991 1778c9e 58843c4 899d9c6 0ff4ef8 f415c95 97c4991 1778c9e d7cd63b 58843c4 97c4991 899d9c6 1778c9e 899d9c6 1778c9e 899d9c6 1778c9e 899d9c6 1778c9e 899d9c6 1778c9e 899d9c6 8c7e6f1 97c4991 58843c4 97c4991 1778c9e f415c95 1778c9e f415c95 58843c4 1778c9e d7cd63b 58843c4 d7cd63b 262221c 58843c4 262221c d7cd63b 58843c4 0c58a67 d7cd63b 58843c4 d7cd63b 97c4991 ffb2286 97c4991 1778c9e d7cd63b 1778c9e 97c4991 1778c9e 97c4991 1778c9e d7cd63b 1778c9e 97c4991 58843c4 1778c9e 97c4991 1778c9e 97c4991 1778c9e 97c4991 5f94ff7 f977d49 8c7e6f1 1778c9e 631cc27 1778c9e 97c4991 573aa88 97c4991 8c7e6f1 97c4991 f977d49 7716903 51a1671 f977d49 60216ec 8c7e6f1 dd66861 c670717 97c4991 b34bca6 dd66861 d47c403 e8b5344 b924465 58843c4 b924465 58843c4 b924465 58843c4 b924465 1778c9e b924465 58843c4 97c4991 58843c4 b924465 58843c4 b924465 58843c4 b924465 c670717 b34bca6 c670717 b34bca6 c670717 f415c95 c670717 f415c95 c670717 f415c95 c670717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
/** BUSINESS
*
* All utils that are bound to business logic
* (and wouldn't be useful in another project)
* should be here.
*
**/
import ctxLengthData from "$lib/data/context_length.json";
import { InferenceClient, snippets } from "@huggingface/inference";
import { ConversationClass, type ConversationEntityMembers } from "$lib/state/conversations.svelte";
import { token } from "$lib/state/token.svelte";
import {
isCustomModel,
isHFModel,
Provider,
type Conversation,
type ConversationMessage,
type CustomModel,
type Model,
} from "$lib/types.js";
import { safeParse } from "$lib/utils/json.js";
import { omit, tryGet } from "$lib/utils/object.svelte.js";
import { type InferenceProvider } from "@huggingface/inference";
import type { ChatCompletionInputMessage, InferenceSnippet } from "@huggingface/tasks";
import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
import { AutoTokenizer, PreTrainedTokenizer } from "@huggingface/transformers";
import OpenAI from "openai";
import { images } from "$lib/state/images.svelte.js";
import { projects } from "$lib/state/projects.svelte.js";
import { structuredForbiddenProviders } from "$lib/state/models.svelte.js";
import { modifySnippet } from "$lib/utils/snippets.js";
type ChatCompletionInputMessageChunk =
NonNullable<ChatCompletionInputMessage["content"]> extends string | (infer U)[] ? U : never;
async function parseMessage(message: ConversationMessage): Promise<ChatCompletionInputMessage> {
if (!message.images) return message;
const urls = await Promise.all(message.images?.map(k => images.get(k)) ?? []);
return {
...omit(message, "images"),
content: [
{
type: "text",
text: message.content ?? "",
},
...message.images.map((_imgKey, i) => {
return {
type: "image_url",
image_url: { url: urls[i] as string },
} satisfies ChatCompletionInputMessageChunk;
}),
],
};
}
type HFCompletionMetadata = {
type: "huggingface";
client: InferenceClient;
args: Parameters<InferenceClient["chatCompletion"]>[0];
};
type OpenAICompletionMetadata = {
type: "openai";
client: OpenAI;
args: OpenAI.ChatCompletionCreateParams;
};
type CompletionMetadata = HFCompletionMetadata | OpenAICompletionMetadata;
export function maxAllowedTokens(conversation: ConversationClass) {
const ctxLength = (() => {
const model = conversation.model;
const { provider } = conversation.data;
if (!provider || !isHFModel(model)) return;
const idOnProvider = model.inferenceProviderMapping.find(data => data.provider === provider)?.providerId;
if (!idOnProvider) return;
const models = tryGet(ctxLengthData, provider);
if (!models) return;
return tryGet(models, idOnProvider) as number | undefined;
})();
if (!ctxLength) return customMaxTokens[conversation.model.id] ?? 100000;
return ctxLength;
}
function getResponseFormatObj(conversation: ConversationClass | Conversation) {
const data = conversation instanceof ConversationClass ? conversation.data : conversation;
const json = safeParse(data.structuredOutput?.schema ?? "");
// eslint-disable-next-line @typescript-eslint/no-explicit-any
if (json && data.structuredOutput?.enabled && !structuredForbiddenProviders.includes(data.provider as any)) {
switch (data.provider) {
case "cohere": {
return {
type: "json_object",
...json,
};
}
case Provider.Cerebras: {
return {
type: "json_schema",
json_schema: { ...json, name: "schema" },
};
}
default: {
return {
type: "json_schema",
json_schema: json,
};
}
}
}
}
async function getCompletionMetadata(
conversation: ConversationClass | Conversation,
signal?: AbortSignal
): Promise<CompletionMetadata> {
const data = conversation instanceof ConversationClass ? conversation.data : conversation;
const model = conversation.model;
const systemMessage = projects.current?.systemMessage;
const messages: ConversationMessage[] = [
...(isSystemPromptSupported(model) && systemMessage?.length ? [{ role: "system", content: systemMessage }] : []),
...data.messages,
];
const parsed = await Promise.all(messages.map(parseMessage));
const baseArgs = {
...data.config,
messages: parsed,
model: model.id,
response_format: getResponseFormatObj(conversation),
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} as any;
// Handle OpenAI-compatible models
if (isCustomModel(model)) {
const openai = new OpenAI({
apiKey: model.accessToken,
baseURL: model.endpointUrl,
dangerouslyAllowBrowser: true,
fetch: (...args: Parameters<typeof fetch>) => {
return fetch(args[0], { ...args[1], signal });
},
});
const args = {
...baseArgs,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} as any;
return {
type: "openai",
client: openai,
args,
};
}
const args = {
...baseArgs,
provider: data.provider,
// max_tokens: maxAllowedTokens(conversation) - currTokens,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} as any;
// Handle HuggingFace models
return {
type: "huggingface",
client: new InferenceClient(token.value),
args,
};
}
export async function handleStreamingResponse(
conversation: ConversationClass | Conversation,
onChunk: (content: string) => void,
abortController: AbortController
): Promise<void> {
const metadata = await getCompletionMetadata(conversation, abortController.signal);
if (metadata.type === "openai") {
const stream = await metadata.client.chat.completions.create({
...metadata.args,
stream: true,
} as OpenAI.ChatCompletionCreateParamsStreaming);
let out = "";
for await (const chunk of stream) {
if (chunk.choices[0]?.delta?.content) {
out += chunk.choices[0].delta.content;
onChunk(out);
}
}
return;
}
// HuggingFace streaming
let out = "";
for await (const chunk of metadata.client.chatCompletionStream(metadata.args, { signal: abortController.signal })) {
if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) {
out += chunk.choices[0].delta.content;
onChunk(out);
}
}
}
export async function handleNonStreamingResponse(
conversation: ConversationClass | Conversation
): Promise<{ message: ChatCompletionOutputMessage; completion_tokens: number }> {
const metadata = await getCompletionMetadata(conversation);
if (metadata.type === "openai") {
const response = await metadata.client.chat.completions.create({
...metadata.args,
stream: false,
} as OpenAI.ChatCompletionCreateParamsNonStreaming);
if (response.choices && response.choices.length > 0 && response.choices[0]?.message) {
return {
message: {
role: "assistant",
content: response.choices[0].message.content || "",
},
completion_tokens: response.usage?.completion_tokens || 0,
};
}
throw new Error("No response from the model");
}
// HuggingFace non-streaming
const response = await metadata.client.chatCompletion(metadata.args);
if (response.choices && response.choices.length > 0) {
const { message } = response.choices[0]!;
const { completion_tokens } = response.usage;
return { message, completion_tokens };
}
throw new Error("No response from the model");
}
export function isSystemPromptSupported(model: Model | CustomModel) {
if (isCustomModel(model)) return true; // OpenAI-compatible models support system messages
const template = model?.config.tokenizer_config?.chat_template;
if (typeof template !== "string") return false;
return template.includes("system");
}
export const defaultSystemMessage: { [key: string]: string } = {
"Qwen/QwQ-32B-Preview":
"You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.",
} as const;
export const customMaxTokens: { [key: string]: number } = {
"01-ai/Yi-1.5-34B-Chat": 2048,
"HuggingFaceM4/idefics-9b-instruct": 2048,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 16384,
"bigcode/starcoder": 8192,
"bigcode/starcoderplus": 8192,
"HuggingFaceH4/starcoderbase-finetuned-oasst1": 8192,
"google/gemma-7b": 8192,
"google/gemma-1.1-7b-it": 8192,
"google/gemma-2b": 8192,
"google/gemma-1.1-2b-it": 8192,
"google/gemma-2-27b-it": 8192,
"google/gemma-2-9b-it": 4096,
"google/gemma-2-2b-it": 8192,
"tiiuae/falcon-7b": 8192,
"tiiuae/falcon-7b-instruct": 8192,
"timdettmers/guanaco-33b-merged": 2048,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"Qwen/Qwen2.5-72B-Instruct": 32768,
"Qwen/Qwen2.5-Coder-32B-Instruct": 32768,
"meta-llama/Meta-Llama-3-70B-Instruct": 8192,
"CohereForAI/c4ai-command-r-plus-08-2024": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"meta-llama/Llama-2-70b-chat-hf": 8192,
"HuggingFaceH4/zephyr-7b-alpha": 17432,
"HuggingFaceH4/zephyr-7b-beta": 32768,
"mistralai/Mistral-7B-Instruct-v0.1": 32768,
"mistralai/Mistral-7B-Instruct-v0.2": 32768,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"mistralai/Mistral-Nemo-Instruct-2407": 32768,
"meta-llama/Meta-Llama-3-8B-Instruct": 8192,
"mistralai/Mistral-7B-v0.1": 32768,
"bigcode/starcoder2-3b": 16384,
"bigcode/starcoder2-15b": 16384,
"HuggingFaceH4/starchat2-15b-v0.1": 16384,
"codellama/CodeLlama-7b-hf": 8192,
"codellama/CodeLlama-13b-hf": 8192,
"codellama/CodeLlama-34b-Instruct-hf": 8192,
"meta-llama/Llama-2-7b-chat-hf": 8192,
"meta-llama/Llama-2-13b-chat-hf": 8192,
"OpenAssistant/oasst-sft-6-llama-30b": 2048,
"TheBloke/vicuna-7B-v1.5-GPTQ": 2048,
"HuggingFaceH4/starchat-beta": 8192,
"bigcode/octocoder": 8192,
"vwxyzjn/starcoderbase-triviaqa": 8192,
"lvwerra/starcoderbase-gsm8k": 8192,
"NousResearch/Hermes-3-Llama-3.1-8B": 16384,
"microsoft/Phi-3.5-mini-instruct": 32768,
"meta-llama/Llama-3.1-70B-Instruct": 32768,
"meta-llama/Llama-3.1-8B-Instruct": 8192,
} as const;
// Order of the elements in InferenceModal.svelte is determined by this const
export const inferenceSnippetLanguages = ["python", "js", "sh"] as const;
export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number];
export type GetInferenceSnippetReturn = InferenceSnippet[];
export function getInferenceSnippet(
conversation: ConversationClass,
language: InferenceSnippetLanguage,
accessToken: string,
opts?: {
messages?: ConversationEntityMembers["messages"];
streaming?: ConversationEntityMembers["streaming"];
max_tokens?: ConversationEntityMembers["config"]["max_tokens"];
temperature?: ConversationEntityMembers["config"]["temperature"];
top_p?: ConversationEntityMembers["config"]["top_p"];
structured_output?: ConversationEntityMembers["structuredOutput"];
}
): GetInferenceSnippetReturn {
const model = conversation.model;
const data = conversation.data;
const provider = (isCustomModel(model) ? "hf-inference" : data.provider) as InferenceProvider;
// If it's a custom model, we don't generate inference snippets
if (isCustomModel(model)) {
return [];
}
const providerMapping = model.inferenceProviderMapping.find(p => p.provider === provider);
if (!providerMapping) return [];
const allSnippets = snippets.getInferenceSnippets(
{ ...model, inference: "" },
accessToken,
provider,
{ ...providerMapping, hfModelId: model.id },
opts
);
if (opts?.structured_output && !structuredForbiddenProviders.includes(provider as Provider)) {
allSnippets.forEach(s => {
const modified = modifySnippet(s.content, { prop: "hi" });
if (s.content === modified) {
console.log("Failed for", s.language, "\n");
} else {
console.log("Original snippet");
console.log(s.content);
console.log("\nModified");
console.log(modified);
console.log();
}
});
}
return allSnippets
.filter(s => s.language === language)
.map(s => {
if (opts?.structured_output && !structuredForbiddenProviders.includes(provider as Provider)) {
return {
...s,
content: modifySnippet(s.content, {
response_format: getResponseFormatObj(conversation),
}),
};
}
return s;
});
}
const tokenizers = new Map<string, PreTrainedTokenizer | null>();
export async function getTokenizer(model: Model) {
if (tokenizers.has(model.id)) return tokenizers.get(model.id)!;
try {
const tokenizer = await AutoTokenizer.from_pretrained(model.id);
tokenizers.set(model.id, tokenizer);
return tokenizer;
} catch {
tokenizers.set(model.id, null);
return null;
}
}
// When you don't have access to a tokenizer, guesstimate
export function estimateTokens(conversation: Conversation) {
const content = conversation.messages.reduce((acc, curr) => {
return acc + (curr?.content ?? "");
}, "");
return content.length / 4; // 1 token ~ 4 characters
}
export async function getTokens(conversation: Conversation): Promise<number> {
const model = conversation.model;
if (isCustomModel(model)) return estimateTokens(conversation);
const tokenizer = await getTokenizer(model);
if (tokenizer === null) return estimateTokens(conversation);
// This is a simplified version - you might need to adjust based on your exact needs
let formattedText = "";
conversation.messages.forEach((message, index) => {
let content = `<|start_header_id|>${message.role}<|end_header_id|>\n\n${message.content?.trim()}<|eot_id|>`;
// Add BOS token to the first message
if (index === 0) {
content = "<|begin_of_text|>" + content;
}
formattedText += content;
});
// Encode the text to get tokens
const encodedInput = tokenizer.encode(formattedText);
// Return the number of tokens
return encodedInput.length;
}
|