Spaces:
Running
Running
chat_with_paper_update
Browse files- README.md +1 -1
- app.py +13 -10
- paper_chat_tab.py +240 -193
README.md
CHANGED
|
@@ -5,7 +5,7 @@ emoji: ⚡
|
|
| 5 |
colorFrom: red
|
| 6 |
colorTo: purple
|
| 7 |
sdk: gradio
|
| 8 |
-
sdk_version: 5.
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
header: mini
|
|
|
|
| 5 |
colorFrom: red
|
| 6 |
colorTo: purple
|
| 7 |
sdk: gradio
|
| 8 |
+
sdk_version: 5.8.0
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
header: mini
|
app.py
CHANGED
|
@@ -82,6 +82,12 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
| 82 |
link="https://huggingface.co/datasets/huggingface/paper-central-data")
|
| 83 |
|
| 84 |
with gr.Tabs() as tabs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
with gr.Tab("Paper-central", id="tab-paper-central"):
|
| 86 |
# Create a row for navigation buttons and calendar
|
| 87 |
with gr.Row():
|
|
@@ -178,6 +184,8 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
| 178 |
wrap=True,
|
| 179 |
)
|
| 180 |
|
|
|
|
|
|
|
| 181 |
with gr.Tab("Edit papers", id="tab-pr"):
|
| 182 |
pr_paper_central_tab(paper_central_df.df_raw)
|
| 183 |
|
|
@@ -187,19 +195,13 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
| 187 |
with gr.Tab("Contributors"):
|
| 188 |
author_resource_leaderboard_tab()
|
| 189 |
|
| 190 |
-
with gr.Tab("Chat With Paper", id="tab-chat-with-paper", visible=False) as tab_chat_paper:
|
| 191 |
-
gr.Markdown("## Chat with Paper")
|
| 192 |
-
arxiv_id = gr.State(value=None)
|
| 193 |
-
paper_from = gr.State(value=None)
|
| 194 |
-
paper_chat_tab(arxiv_id, paper_from)
|
| 195 |
-
|
| 196 |
|
| 197 |
# chat with paper
|
| 198 |
def get_selected(evt: gr.SelectData, dataframe_origin):
|
| 199 |
|
| 200 |
paper_id = gr.update(value=None)
|
| 201 |
paper_from = gr.update(value=None)
|
| 202 |
-
tab_chat_paper = gr.update(visible=
|
| 203 |
selected_tab = gr.Tabs()
|
| 204 |
|
| 205 |
try:
|
|
@@ -516,7 +518,7 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
| 516 |
selected_tab = gr.Tabs()
|
| 517 |
paper_id = gr.update(value=None)
|
| 518 |
paper_from = gr.update(value=None)
|
| 519 |
-
tab_chat_paper = gr.update(visible=
|
| 520 |
|
| 521 |
if request:
|
| 522 |
# print("Request headers dictionary:", dict(request.headers))
|
|
@@ -568,7 +570,8 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
| 568 |
api_name="update_data",
|
| 569 |
).then(
|
| 570 |
fn=echo,
|
| 571 |
-
outputs=[calendar, date_range_radio, conference_options, hf_options, tabs, arxiv_id, paper_from,
|
|
|
|
| 572 |
api_name=False,
|
| 573 |
).then(
|
| 574 |
# New then to handle LoginButton and HTML components
|
|
@@ -583,7 +586,7 @@ def main():
|
|
| 583 |
"""
|
| 584 |
Launches the Gradio app.
|
| 585 |
"""
|
| 586 |
-
demo.launch(
|
| 587 |
|
| 588 |
|
| 589 |
# Run the main function when the script is executed
|
|
|
|
| 82 |
link="https://huggingface.co/datasets/huggingface/paper-central-data")
|
| 83 |
|
| 84 |
with gr.Tabs() as tabs:
|
| 85 |
+
with gr.Tab("Chat With Paper", id="tab-chat-with-paper", visible=True) as tab_chat_paper:
|
| 86 |
+
gr.Markdown("## Chat with Paper")
|
| 87 |
+
arxiv_id = gr.State(value=None)
|
| 88 |
+
paper_from = gr.State(value=None)
|
| 89 |
+
paper_chat_tab(arxiv_id, paper_from, paper_central_df)
|
| 90 |
+
|
| 91 |
with gr.Tab("Paper-central", id="tab-paper-central"):
|
| 92 |
# Create a row for navigation buttons and calendar
|
| 93 |
with gr.Row():
|
|
|
|
| 184 |
wrap=True,
|
| 185 |
)
|
| 186 |
|
| 187 |
+
|
| 188 |
+
|
| 189 |
with gr.Tab("Edit papers", id="tab-pr"):
|
| 190 |
pr_paper_central_tab(paper_central_df.df_raw)
|
| 191 |
|
|
|
|
| 195 |
with gr.Tab("Contributors"):
|
| 196 |
author_resource_leaderboard_tab()
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
# chat with paper
|
| 200 |
def get_selected(evt: gr.SelectData, dataframe_origin):
|
| 201 |
|
| 202 |
paper_id = gr.update(value=None)
|
| 203 |
paper_from = gr.update(value=None)
|
| 204 |
+
tab_chat_paper = gr.update(visible=True)
|
| 205 |
selected_tab = gr.Tabs()
|
| 206 |
|
| 207 |
try:
|
|
|
|
| 518 |
selected_tab = gr.Tabs()
|
| 519 |
paper_id = gr.update(value=None)
|
| 520 |
paper_from = gr.update(value=None)
|
| 521 |
+
tab_chat_paper = gr.update(visible=True)
|
| 522 |
|
| 523 |
if request:
|
| 524 |
# print("Request headers dictionary:", dict(request.headers))
|
|
|
|
| 570 |
api_name="update_data",
|
| 571 |
).then(
|
| 572 |
fn=echo,
|
| 573 |
+
outputs=[calendar, date_range_radio, conference_options, hf_options, tabs, arxiv_id, paper_from,
|
| 574 |
+
tab_chat_paper],
|
| 575 |
api_name=False,
|
| 576 |
).then(
|
| 577 |
# New then to handle LoginButton and HTML components
|
|
|
|
| 586 |
"""
|
| 587 |
Launches the Gradio app.
|
| 588 |
"""
|
| 589 |
+
demo.launch(share=True)
|
| 590 |
|
| 591 |
|
| 592 |
# Run the main function when the script is executed
|
paper_chat_tab.py
CHANGED
|
@@ -7,9 +7,10 @@ import requests
|
|
| 7 |
from io import BytesIO
|
| 8 |
from transformers import AutoTokenizer
|
| 9 |
import json
|
| 10 |
-
|
| 11 |
import os
|
| 12 |
from openai import OpenAI
|
|
|
|
| 13 |
|
| 14 |
# Cache for tokenizers to avoid reloading
|
| 15 |
tokenizer_cache = {}
|
|
@@ -23,7 +24,6 @@ PROVIDERS = {
|
|
| 23 |
"api_key_env_var": "SAMBANOVA_API_KEY",
|
| 24 |
"models": [
|
| 25 |
"Meta-Llama-3.1-70B-Instruct",
|
| 26 |
-
# Add more models if needed
|
| 27 |
],
|
| 28 |
"type": "tuples",
|
| 29 |
"max_total_tokens": "50000",
|
|
@@ -43,12 +43,12 @@ PROVIDERS = {
|
|
| 43 |
}
|
| 44 |
|
| 45 |
|
| 46 |
-
#
|
| 47 |
def fetch_paper_info_neurips(paper_id):
|
| 48 |
url = f"https://openreview.net/forum?id={paper_id}"
|
| 49 |
response = requests.get(url)
|
| 50 |
if response.status_code != 200:
|
| 51 |
-
return None
|
| 52 |
|
| 53 |
html_content = response.content
|
| 54 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
@@ -73,66 +73,104 @@ def fetch_paper_info_neurips(paper_id):
|
|
| 73 |
else:
|
| 74 |
abstract = 'Abstract not found'
|
| 75 |
|
| 76 |
-
# Construct preamble
|
| 77 |
-
|
|
|
|
| 78 |
|
| 79 |
-
return preamble
|
| 80 |
|
| 81 |
-
|
| 82 |
-
def fetch_paper_content_arxiv(paper_id):
|
| 83 |
try:
|
| 84 |
-
|
| 85 |
-
url = f"https://arxiv.org/pdf/{paper_id}.pdf"
|
| 86 |
-
|
| 87 |
-
# Fetch the PDF
|
| 88 |
response = requests.get(url)
|
| 89 |
-
response.raise_for_status()
|
| 90 |
-
|
| 91 |
-
# Read the PDF content
|
| 92 |
pdf_content = BytesIO(response.content)
|
| 93 |
reader = PdfReader(pdf_content)
|
| 94 |
-
|
| 95 |
-
# Extract text from the PDF
|
| 96 |
text = ""
|
| 97 |
for page in reader.pages:
|
| 98 |
text += page.extract_text()
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
except Exception as e:
|
| 102 |
-
print(f"Error fetching paper content: {e}")
|
| 103 |
return None
|
| 104 |
|
| 105 |
|
| 106 |
-
def
|
| 107 |
try:
|
| 108 |
-
|
| 109 |
-
url = f"https://openreview.net/pdf?id={paper_id}"
|
| 110 |
-
|
| 111 |
-
# Fetch the PDF
|
| 112 |
response = requests.get(url)
|
| 113 |
-
response.raise_for_status()
|
| 114 |
-
|
| 115 |
-
# Read the PDF content
|
| 116 |
pdf_content = BytesIO(response.content)
|
| 117 |
reader = PdfReader(pdf_content)
|
| 118 |
-
|
| 119 |
-
# Extract text from the PDF
|
| 120 |
text = ""
|
| 121 |
for page in reader.pages:
|
| 122 |
text += page.extract_text()
|
| 123 |
-
|
| 124 |
-
return text # Return full text; truncation will be handled later
|
| 125 |
-
|
| 126 |
except Exception as e:
|
| 127 |
-
print(f"
|
| 128 |
return None
|
| 129 |
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
|
| 132 |
provider_max_total_tokens):
|
| 133 |
# Define the function to handle the chat
|
| 134 |
-
print("the type is", default_type.value)
|
| 135 |
-
|
| 136 |
def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
|
| 137 |
max_total_tokens):
|
| 138 |
provider_info = PROVIDERS[provider_name_value]
|
|
@@ -141,11 +179,9 @@ def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_t
|
|
| 141 |
models = provider_info['models']
|
| 142 |
max_total_tokens = int(max_total_tokens)
|
| 143 |
|
| 144 |
-
# Load tokenizer
|
| 145 |
tokenizer_key = f"{provider_name_value}_{model_name_value}"
|
| 146 |
if tokenizer_key not in tokenizer_cache:
|
| 147 |
-
# Load the tokenizer; adjust the model path based on the provider and model
|
| 148 |
-
# This is a placeholder; you need to provide the correct tokenizer path
|
| 149 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
|
| 150 |
token=os.environ.get("HF_TOKEN"))
|
| 151 |
tokenizer_cache[tokenizer_key] = tokenizer
|
|
@@ -189,32 +225,28 @@ def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_t
|
|
| 189 |
|
| 190 |
# Check if total tokens exceed the maximum allowed tokens
|
| 191 |
if total_tokens > max_total_tokens:
|
| 192 |
-
# Attempt to truncate
|
| 193 |
available_tokens = max_total_tokens - (total_tokens - context_token_length)
|
| 194 |
if available_tokens > 0:
|
| 195 |
-
# Truncate the context to fit the available tokens
|
| 196 |
truncated_context_tokens = context_tokens[:available_tokens]
|
| 197 |
context = tokenizer.decode(truncated_context_tokens)
|
| 198 |
context_token_length = available_tokens
|
| 199 |
total_tokens = total_tokens - len(context_tokens) + context_token_length
|
| 200 |
else:
|
| 201 |
-
# Not enough space for context; remove it
|
| 202 |
context = ""
|
| 203 |
total_tokens -= context_token_length
|
| 204 |
context_token_length = 0
|
| 205 |
|
| 206 |
-
#
|
| 207 |
while total_tokens > max_total_tokens and len(messages) > 1:
|
| 208 |
-
# Remove the oldest message
|
| 209 |
removed_message = messages.pop(0)
|
| 210 |
removed_tokens = message_tokens_list.pop(0)
|
| 211 |
total_tokens -= removed_tokens
|
| 212 |
|
| 213 |
-
# Rebuild the final messages
|
| 214 |
final_messages = []
|
| 215 |
if context:
|
| 216 |
-
final_messages.append(
|
| 217 |
-
{"role": "system", "content": f"{context}"})
|
| 218 |
final_messages.extend(messages)
|
| 219 |
|
| 220 |
# Use the provider's API key
|
|
@@ -222,14 +254,13 @@ def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_t
|
|
| 222 |
if not api_key:
|
| 223 |
raise ValueError("API token is not provided.")
|
| 224 |
|
| 225 |
-
# Initialize the OpenAI client
|
| 226 |
client = OpenAI(
|
| 227 |
base_url=endpoint,
|
| 228 |
api_key=api_key,
|
| 229 |
)
|
| 230 |
|
| 231 |
try:
|
| 232 |
-
# Create the chat completion
|
| 233 |
completion = client.chat.completions.create(
|
| 234 |
model=model_name_value,
|
| 235 |
messages=final_messages,
|
|
@@ -241,29 +272,13 @@ def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_t
|
|
| 241 |
response_text += delta
|
| 242 |
yield response_text
|
| 243 |
except json.JSONDecodeError as e:
|
| 244 |
-
|
| 245 |
-
print(f"Error Message: {e.msg}")
|
| 246 |
-
print(f"Error Position: Line {e.lineno}, Column {e.colno} (Character {e.pos})")
|
| 247 |
-
print(f"Problematic JSON Data: {e.doc}")
|
| 248 |
-
yield f"{e.doc}"
|
| 249 |
except openai.OpenAIError as openai_err:
|
| 250 |
-
|
| 251 |
-
print(f"An OpenAI error occurred: {openai_err}")
|
| 252 |
-
yield f"{openai_err}"
|
| 253 |
except Exception as ex:
|
| 254 |
-
|
| 255 |
-
print(f"An unexpected error occurred: {ex}")
|
| 256 |
-
yield f"{ex}"
|
| 257 |
-
|
| 258 |
-
# Create the Chatbot separately to access it later
|
| 259 |
-
chatbot = gr.Chatbot(
|
| 260 |
-
label="Chatbot",
|
| 261 |
-
scale=1,
|
| 262 |
-
height=400,
|
| 263 |
-
autoscroll=True,
|
| 264 |
-
)
|
| 265 |
|
| 266 |
-
|
| 267 |
chat_interface = gr.ChatInterface(
|
| 268 |
fn=get_fn,
|
| 269 |
chatbot=chatbot,
|
|
@@ -273,142 +288,164 @@ def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_t
|
|
| 273 |
return chat_interface, chatbot
|
| 274 |
|
| 275 |
|
| 276 |
-
def paper_chat_tab(paper_id, paper_from):
|
| 277 |
-
with gr.
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
|
|
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
choices=provider_names,
|
| 292 |
-
value=default_provider
|
| 293 |
-
)
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
# Dropdown for selecting the model
|
| 302 |
-
model_dropdown = gr.Dropdown(
|
| 303 |
-
label="Select Model",
|
| 304 |
-
choices=PROVIDERS[default_provider]['models'],
|
| 305 |
-
value=PROVIDERS[default_provider]['models'][0]
|
| 306 |
-
)
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
|
| 311 |
-
)
|
| 312 |
|
| 313 |
-
#
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
chatbot_message_type = provider_info['type']
|
| 333 |
-
max_total_tokens = provider_info['max_total_tokens']
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
|
|
|
| 337 |
|
| 338 |
-
|
| 339 |
-
logo_html_content = f'<img src="{logo_url}" width="100px" />'
|
| 340 |
-
logo_html_update = gr.update(value=logo_html_content)
|
| 341 |
|
| 342 |
-
|
| 343 |
-
note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
|
| 344 |
|
| 345 |
-
#
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
|
| 349 |
-
)
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
)
|
| 363 |
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
preamble = "Paper not found or could not retrieve paper information."
|
| 371 |
-
if text is None:
|
| 372 |
-
return preamble, None, []
|
| 373 |
-
return preamble, text, []
|
| 374 |
-
elif paper_from_value == "paper_page":
|
| 375 |
-
# Fetch the paper information from Hugging Face API
|
| 376 |
-
url = f"https://huggingface.co/api/papers/{paper_id_value}?field=comments"
|
| 377 |
-
response = requests.get(url)
|
| 378 |
-
if response.status_code != 200:
|
| 379 |
-
return "Paper not found or could not retrieve paper information.", None, []
|
| 380 |
-
paper_info = response.json()
|
| 381 |
-
|
| 382 |
-
# Extract required information
|
| 383 |
-
title = paper_info.get('title', 'No Title')
|
| 384 |
-
link = f"https://huggingface.co/papers/{paper_id_value}"
|
| 385 |
-
authors_list = [author.get('name', 'Unknown') for author in paper_info.get('authors', [])]
|
| 386 |
-
authors = ', '.join(authors_list)
|
| 387 |
-
summary = paper_info.get('summary', 'No Summary')
|
| 388 |
-
num_comments = len(paper_info.get('comments', []))
|
| 389 |
-
num_upvotes = paper_info.get('upvotes', 0)
|
| 390 |
-
|
| 391 |
-
# Format the preamble
|
| 392 |
-
preamble = f"🤗 [paper-page]({link})<br/>"
|
| 393 |
-
preamble += f"**Title:** {title}<br/>"
|
| 394 |
-
preamble += f"**Authors:** {authors}<br/>"
|
| 395 |
-
preamble += f"**Summary:**<br/>>\n{summary}<br/>"
|
| 396 |
-
preamble += f"👍{num_comments} 💬{num_upvotes} <br/>"
|
| 397 |
-
|
| 398 |
-
# Fetch the paper content
|
| 399 |
-
text = fetch_paper_content_arxiv(paper_id_value)
|
| 400 |
-
if text is None:
|
| 401 |
-
text = "Paper content could not be retrieved."
|
| 402 |
-
return preamble, text, []
|
| 403 |
-
else:
|
| 404 |
-
return "", "", []
|
| 405 |
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
|
| 413 |
|
| 414 |
def main():
|
|
@@ -416,10 +453,7 @@ def main():
|
|
| 416 |
Launches the Gradio app.
|
| 417 |
"""
|
| 418 |
with gr.Blocks(css_paths="style.css") as demo:
|
| 419 |
-
# Create an input for paper_id
|
| 420 |
paper_id = gr.Textbox(label="Paper ID", value="")
|
| 421 |
-
|
| 422 |
-
# Create an input for paper_from (e.g., 'neurips' or 'paper_page')
|
| 423 |
paper_from = gr.Radio(
|
| 424 |
label="Paper Source",
|
| 425 |
choices=["neurips", "paper_page"],
|
|
@@ -427,11 +461,24 @@ def main():
|
|
| 427 |
)
|
| 428 |
|
| 429 |
# Build the paper chat tab
|
| 430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
|
| 432 |
demo.launch(ssr_mode=False)
|
| 433 |
|
| 434 |
|
| 435 |
-
# Run the main function when the script is executed
|
| 436 |
if __name__ == "__main__":
|
| 437 |
main()
|
|
|
|
| 7 |
from io import BytesIO
|
| 8 |
from transformers import AutoTokenizer
|
| 9 |
import json
|
| 10 |
+
from datetime import datetime
|
| 11 |
import os
|
| 12 |
from openai import OpenAI
|
| 13 |
+
import re
|
| 14 |
|
| 15 |
# Cache for tokenizers to avoid reloading
|
| 16 |
tokenizer_cache = {}
|
|
|
|
| 24 |
"api_key_env_var": "SAMBANOVA_API_KEY",
|
| 25 |
"models": [
|
| 26 |
"Meta-Llama-3.1-70B-Instruct",
|
|
|
|
| 27 |
],
|
| 28 |
"type": "tuples",
|
| 29 |
"max_total_tokens": "50000",
|
|
|
|
| 43 |
}
|
| 44 |
|
| 45 |
|
| 46 |
+
# Functions for paper fetching
|
| 47 |
def fetch_paper_info_neurips(paper_id):
|
| 48 |
url = f"https://openreview.net/forum?id={paper_id}"
|
| 49 |
response = requests.get(url)
|
| 50 |
if response.status_code != 200:
|
| 51 |
+
return None, None, None
|
| 52 |
|
| 53 |
html_content = response.content
|
| 54 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
|
| 73 |
else:
|
| 74 |
abstract = 'Abstract not found'
|
| 75 |
|
| 76 |
+
# Construct preamble
|
| 77 |
+
link = f"https://openreview.net/forum?id={paper_id}"
|
| 78 |
+
return title, author_list, f"**Abstract:** {abstract}\n\n[View on OpenReview]({link})"
|
| 79 |
|
|
|
|
| 80 |
|
| 81 |
+
def fetch_paper_content_neurips(paper_id):
|
|
|
|
| 82 |
try:
|
| 83 |
+
url = f"https://openreview.net/pdf?id={paper_id}"
|
|
|
|
|
|
|
|
|
|
| 84 |
response = requests.get(url)
|
| 85 |
+
response.raise_for_status()
|
|
|
|
|
|
|
| 86 |
pdf_content = BytesIO(response.content)
|
| 87 |
reader = PdfReader(pdf_content)
|
|
|
|
|
|
|
| 88 |
text = ""
|
| 89 |
for page in reader.pages:
|
| 90 |
text += page.extract_text()
|
| 91 |
+
return text
|
| 92 |
+
except:
|
|
|
|
|
|
|
| 93 |
return None
|
| 94 |
|
| 95 |
|
| 96 |
+
def fetch_paper_content_arxiv(paper_id):
|
| 97 |
try:
|
| 98 |
+
url = f"https://arxiv.org/pdf/{paper_id}.pdf"
|
|
|
|
|
|
|
|
|
|
| 99 |
response = requests.get(url)
|
| 100 |
+
response.raise_for_status()
|
|
|
|
|
|
|
| 101 |
pdf_content = BytesIO(response.content)
|
| 102 |
reader = PdfReader(pdf_content)
|
|
|
|
|
|
|
| 103 |
text = ""
|
| 104 |
for page in reader.pages:
|
| 105 |
text += page.extract_text()
|
| 106 |
+
return text
|
|
|
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
+
print(f"Error fetching paper content: {e}")
|
| 109 |
return None
|
| 110 |
|
| 111 |
|
| 112 |
+
def fetch_paper_info_paperpage(paper_id_value):
|
| 113 |
+
# Extract paper_id from paper_page link or input
|
| 114 |
+
def extract_paper_id(input_string):
|
| 115 |
+
# Already in correct form?
|
| 116 |
+
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
|
| 117 |
+
return input_string.strip()
|
| 118 |
+
# If URL
|
| 119 |
+
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
|
| 120 |
+
if match:
|
| 121 |
+
return match.group(1)
|
| 122 |
+
return input_string.strip()
|
| 123 |
+
|
| 124 |
+
paper_id_value = extract_paper_id(paper_id_value)
|
| 125 |
+
url = f"https://huggingface.co/api/papers/{paper_id_value}?field=comments"
|
| 126 |
+
response = requests.get(url)
|
| 127 |
+
if response.status_code != 200:
|
| 128 |
+
return None, None, None
|
| 129 |
+
paper_info = response.json()
|
| 130 |
+
title = paper_info.get('title', 'No Title')
|
| 131 |
+
authors_list = [author.get('name', 'Unknown') for author in paper_info.get('authors', [])]
|
| 132 |
+
authors = ', '.join(authors_list)
|
| 133 |
+
summary = paper_info.get('summary', 'No Summary')
|
| 134 |
+
num_comments = len(paper_info.get('comments', []))
|
| 135 |
+
num_upvotes = paper_info.get('upvotes', 0)
|
| 136 |
+
link = f"https://huggingface.co/papers/{paper_id_value}"
|
| 137 |
+
|
| 138 |
+
details = f"{summary}<br/>👍{num_comments} 💬{num_upvotes}<br/> <a href='{link}' " \
|
| 139 |
+
f"target='_blank'>View on 🤗 hugging face</a>"
|
| 140 |
+
return title, authors, details
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def fetch_paper_content_paperpage(paper_id_value):
|
| 144 |
+
# Extract paper_id
|
| 145 |
+
def extract_paper_id(input_string):
|
| 146 |
+
if re.fullmatch(r'\d+\.\d+', input_string.strip()):
|
| 147 |
+
return input_string.strip()
|
| 148 |
+
match = re.search(r'https://huggingface\.co/papers/(\d+\.\d+)', input_string)
|
| 149 |
+
if match:
|
| 150 |
+
return match.group(1)
|
| 151 |
+
return input_string.strip()
|
| 152 |
+
|
| 153 |
+
paper_id_value = extract_paper_id(paper_id_value)
|
| 154 |
+
text = fetch_paper_content_arxiv(paper_id_value)
|
| 155 |
+
return text
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# Dictionary for paper sources
|
| 159 |
+
PAPER_SOURCES = {
|
| 160 |
+
"neurips": {
|
| 161 |
+
"fetch_info": fetch_paper_info_neurips,
|
| 162 |
+
"fetch_pdf": fetch_paper_content_neurips
|
| 163 |
+
},
|
| 164 |
+
"paper_page": {
|
| 165 |
+
"fetch_info": fetch_paper_info_paperpage,
|
| 166 |
+
"fetch_pdf": fetch_paper_content_paperpage
|
| 167 |
+
}
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
|
| 171 |
def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
|
| 172 |
provider_max_total_tokens):
|
| 173 |
# Define the function to handle the chat
|
|
|
|
|
|
|
| 174 |
def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
|
| 175 |
max_total_tokens):
|
| 176 |
provider_info = PROVIDERS[provider_name_value]
|
|
|
|
| 179 |
models = provider_info['models']
|
| 180 |
max_total_tokens = int(max_total_tokens)
|
| 181 |
|
| 182 |
+
# Load tokenizer
|
| 183 |
tokenizer_key = f"{provider_name_value}_{model_name_value}"
|
| 184 |
if tokenizer_key not in tokenizer_cache:
|
|
|
|
|
|
|
| 185 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
|
| 186 |
token=os.environ.get("HF_TOKEN"))
|
| 187 |
tokenizer_cache[tokenizer_key] = tokenizer
|
|
|
|
| 225 |
|
| 226 |
# Check if total tokens exceed the maximum allowed tokens
|
| 227 |
if total_tokens > max_total_tokens:
|
| 228 |
+
# Attempt to truncate context
|
| 229 |
available_tokens = max_total_tokens - (total_tokens - context_token_length)
|
| 230 |
if available_tokens > 0:
|
|
|
|
| 231 |
truncated_context_tokens = context_tokens[:available_tokens]
|
| 232 |
context = tokenizer.decode(truncated_context_tokens)
|
| 233 |
context_token_length = available_tokens
|
| 234 |
total_tokens = total_tokens - len(context_tokens) + context_token_length
|
| 235 |
else:
|
|
|
|
| 236 |
context = ""
|
| 237 |
total_tokens -= context_token_length
|
| 238 |
context_token_length = 0
|
| 239 |
|
| 240 |
+
# Truncate message history if needed
|
| 241 |
while total_tokens > max_total_tokens and len(messages) > 1:
|
|
|
|
| 242 |
removed_message = messages.pop(0)
|
| 243 |
removed_tokens = message_tokens_list.pop(0)
|
| 244 |
total_tokens -= removed_tokens
|
| 245 |
|
| 246 |
+
# Rebuild the final messages
|
| 247 |
final_messages = []
|
| 248 |
if context:
|
| 249 |
+
final_messages.append({"role": "system", "content": f"{context}"})
|
|
|
|
| 250 |
final_messages.extend(messages)
|
| 251 |
|
| 252 |
# Use the provider's API key
|
|
|
|
| 254 |
if not api_key:
|
| 255 |
raise ValueError("API token is not provided.")
|
| 256 |
|
| 257 |
+
# Initialize the OpenAI client
|
| 258 |
client = OpenAI(
|
| 259 |
base_url=endpoint,
|
| 260 |
api_key=api_key,
|
| 261 |
)
|
| 262 |
|
| 263 |
try:
|
|
|
|
| 264 |
completion = client.chat.completions.create(
|
| 265 |
model=model_name_value,
|
| 266 |
messages=final_messages,
|
|
|
|
| 272 |
response_text += delta
|
| 273 |
yield response_text
|
| 274 |
except json.JSONDecodeError as e:
|
| 275 |
+
yield f"JSON decoding error: {e.msg}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
except openai.OpenAIError as openai_err:
|
| 277 |
+
yield f"OpenAI error: {openai_err}"
|
|
|
|
|
|
|
| 278 |
except Exception as ex:
|
| 279 |
+
yield f"Unexpected error: {ex}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
chatbot = gr.Chatbot(label="Chatbot", scale=1, height=400, autoscroll=True)
|
| 282 |
chat_interface = gr.ChatInterface(
|
| 283 |
fn=get_fn,
|
| 284 |
chatbot=chatbot,
|
|
|
|
| 288 |
return chat_interface, chatbot
|
| 289 |
|
| 290 |
|
| 291 |
+
def paper_chat_tab(paper_id, paper_from, paper_central_df):
|
| 292 |
+
with gr.Row():
|
| 293 |
+
# Left column: Paper selection and display
|
| 294 |
+
with gr.Column(scale=1):
|
| 295 |
+
gr.Markdown("### Select a Paper")
|
| 296 |
+
todays_date = datetime.today().strftime('%Y-%m-%d')
|
| 297 |
|
| 298 |
+
# Filter papers for today's date and having a paper_page
|
| 299 |
+
selectable_papers = paper_central_df.df_prettified
|
| 300 |
+
selectable_papers = selectable_papers[
|
| 301 |
+
selectable_papers['paper_page'].notna() &
|
| 302 |
+
(selectable_papers['paper_page'] != "") &
|
| 303 |
+
(selectable_papers['date'] == todays_date)
|
| 304 |
+
]
|
| 305 |
|
| 306 |
+
paper_choices = [(row['title'], row['paper_page']) for _, row in selectable_papers.iterrows()]
|
| 307 |
+
paper_choices = sorted(paper_choices, key=lambda x: x[0])
|
| 308 |
|
| 309 |
+
if not paper_choices:
|
| 310 |
+
paper_choices = [("No available papers for today", "")]
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
+
paper_select = gr.Dropdown(
|
| 313 |
+
label="Select a paper to chat with:",
|
| 314 |
+
choices=[p[0] for p in paper_choices],
|
| 315 |
+
value=paper_choices[0][0] if paper_choices else None
|
| 316 |
+
)
|
| 317 |
+
select_paper_button = gr.Button("Load this paper")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
+
# Paper info display - styled card
|
| 320 |
+
content = gr.HTML(value="", elem_id="paper_info_card")
|
|
|
|
|
|
|
| 321 |
|
| 322 |
+
# Right column: Provider and model selection + chat
|
| 323 |
+
with gr.Column(scale=1, visible=False) as provider_section:
|
| 324 |
+
gr.Markdown("### LLM Provider and Model")
|
| 325 |
+
provider_names = list(PROVIDERS.keys())
|
| 326 |
+
default_provider = provider_names[0]
|
| 327 |
|
| 328 |
+
default_type = gr.State(value=PROVIDERS[default_provider]["type"])
|
| 329 |
+
default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])
|
| 330 |
|
| 331 |
+
provider_dropdown = gr.Dropdown(
|
| 332 |
+
label="Select Provider",
|
| 333 |
+
choices=provider_names,
|
| 334 |
+
value=default_provider
|
| 335 |
+
)
|
| 336 |
|
| 337 |
+
hf_token_input = gr.Textbox(
|
| 338 |
+
label=f"Enter your {default_provider} API token (optional)",
|
| 339 |
+
type="password",
|
| 340 |
+
placeholder=f"Enter your {default_provider} API token to avoid rate limits"
|
| 341 |
+
)
|
| 342 |
|
| 343 |
+
model_dropdown = gr.Dropdown(
|
| 344 |
+
label="Select Model",
|
| 345 |
+
choices=PROVIDERS[default_provider]['models'],
|
| 346 |
+
value=PROVIDERS[default_provider]['models'][0]
|
| 347 |
+
)
|
|
|
|
|
|
|
| 348 |
|
| 349 |
+
logo_html = gr.HTML(
|
| 350 |
+
value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
|
| 351 |
+
)
|
| 352 |
|
| 353 |
+
note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")
|
|
|
|
|
|
|
| 354 |
|
| 355 |
+
paper_content = gr.State()
|
|
|
|
| 356 |
|
| 357 |
+
# Create chat interface
|
| 358 |
+
chat_interface, chatbot = create_chat_interface(provider_dropdown, model_dropdown, paper_content,
|
| 359 |
+
hf_token_input, default_type, default_max_total_tokens)
|
|
|
|
|
|
|
| 360 |
|
| 361 |
+
def update_provider(selected_provider):
|
| 362 |
+
provider_info = PROVIDERS[selected_provider]
|
| 363 |
+
models = provider_info['models']
|
| 364 |
+
logo_url = provider_info['logo']
|
| 365 |
+
chatbot_message_type = provider_info['type']
|
| 366 |
+
max_total_tokens = provider_info['max_total_tokens']
|
| 367 |
+
|
| 368 |
+
model_dropdown_choices = gr.update(choices=models, value=models[0])
|
| 369 |
+
logo_html_content = f'<img src="{logo_url}" width="100px" />'
|
| 370 |
+
logo_html_update = gr.update(value=logo_html_content)
|
| 371 |
+
note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
|
| 372 |
+
hf_token_input_update = gr.update(
|
| 373 |
+
label=f"Enter your {selected_provider} API token (optional)",
|
| 374 |
+
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
|
| 375 |
+
)
|
| 376 |
+
chatbot_reset = []
|
| 377 |
+
return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens, chatbot_reset
|
| 378 |
+
|
| 379 |
+
provider_dropdown.change(
|
| 380 |
+
fn=update_provider,
|
| 381 |
+
inputs=provider_dropdown,
|
| 382 |
+
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens,
|
| 383 |
+
chatbot],
|
| 384 |
+
queue=False
|
| 385 |
+
)
|
| 386 |
|
| 387 |
+
def update_paper_info(paper_id_value, paper_from_value, selected_model, old_content):
|
| 388 |
+
# Use PAPER_SOURCES to fetch info
|
| 389 |
+
source_info = PAPER_SOURCES.get(paper_from_value, {})
|
| 390 |
+
fetch_info_fn = source_info.get("fetch_info")
|
| 391 |
+
fetch_pdf_fn = source_info.get("fetch_pdf")
|
| 392 |
+
|
| 393 |
+
if not fetch_info_fn or not fetch_pdf_fn:
|
| 394 |
+
return gr.update(value="<div>No information available.</div>"), None, []
|
| 395 |
+
|
| 396 |
+
title, authors, details = fetch_info_fn(paper_id_value)
|
| 397 |
+
if title is None and authors is None and details is None:
|
| 398 |
+
return gr.update(value="<div>No information could be retrieved.</div>"), None, []
|
| 399 |
+
|
| 400 |
+
text = fetch_pdf_fn(paper_id_value)
|
| 401 |
+
if text is None:
|
| 402 |
+
text = "Paper content could not be retrieved."
|
| 403 |
+
|
| 404 |
+
# Create a styled card for the paper info
|
| 405 |
+
card_html = f"""
|
| 406 |
+
<div style="border:1px solid #ccc; border-radius:6px; background:#f9f9f9; padding:15px; margin-bottom:10px;">
|
| 407 |
+
<center><h3 style="margin-top:0; text-decoration:underline;">You are talking with:</h3></center>
|
| 408 |
+
<h3>{title}</h3>
|
| 409 |
+
<p><strong>Authors:</strong> {authors}</p>
|
| 410 |
+
<p>{details}</p>
|
| 411 |
+
</div>
|
| 412 |
+
"""
|
| 413 |
+
|
| 414 |
+
return gr.update(value=card_html), text, []
|
| 415 |
+
|
| 416 |
+
def select_paper(paper_title):
|
| 417 |
+
# Find the corresponding paper_page from the title
|
| 418 |
+
for t, ppage in paper_choices:
|
| 419 |
+
if t == paper_title:
|
| 420 |
+
return ppage, "paper_page"
|
| 421 |
+
return "", ""
|
| 422 |
+
|
| 423 |
+
select_paper_button.click(
|
| 424 |
+
fn=select_paper,
|
| 425 |
+
inputs=[paper_select],
|
| 426 |
+
outputs=[paper_id, paper_from]
|
| 427 |
+
)
|
| 428 |
|
| 429 |
+
# After updating paper_id, we update paper info
|
| 430 |
+
paper_id.change(
|
| 431 |
+
fn=update_paper_info,
|
| 432 |
+
inputs=[paper_id, paper_from, model_dropdown, content],
|
| 433 |
+
outputs=[content, paper_content, chatbot]
|
| 434 |
+
)
|
|
|
|
| 435 |
|
| 436 |
+
# Function to toggle visibility of the right column based on paper_id
|
| 437 |
+
def toggle_provider_visibility(paper_id_value):
|
| 438 |
+
if paper_id_value and paper_id_value.strip():
|
| 439 |
+
return gr.update(visible=True)
|
| 440 |
+
else:
|
| 441 |
+
return gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
+
# Chain a then call to toggle visibility of the provider_section after paper info update
|
| 444 |
+
paper_id.change(
|
| 445 |
+
fn=toggle_provider_visibility,
|
| 446 |
+
inputs=[paper_id],
|
| 447 |
+
outputs=[provider_section]
|
| 448 |
+
)
|
| 449 |
|
| 450 |
|
| 451 |
def main():
|
|
|
|
| 453 |
Launches the Gradio app.
|
| 454 |
"""
|
| 455 |
with gr.Blocks(css_paths="style.css") as demo:
|
|
|
|
| 456 |
paper_id = gr.Textbox(label="Paper ID", value="")
|
|
|
|
|
|
|
| 457 |
paper_from = gr.Radio(
|
| 458 |
label="Paper Source",
|
| 459 |
choices=["neurips", "paper_page"],
|
|
|
|
| 461 |
)
|
| 462 |
|
| 463 |
# Build the paper chat tab
|
| 464 |
+
dummy_calendar = gr.State(datetime.now().strftime("%Y-%m-%d"))
|
| 465 |
+
|
| 466 |
+
class MockPaperCentral:
|
| 467 |
+
def __init__(self):
|
| 468 |
+
import pandas as pd
|
| 469 |
+
data = {
|
| 470 |
+
'date': [datetime.today().strftime('%Y-%m-%d')],
|
| 471 |
+
'paper_page': ['1234.56789'],
|
| 472 |
+
'title': ['An Example Paper']
|
| 473 |
+
}
|
| 474 |
+
self.df_prettified = pd.DataFrame(data)
|
| 475 |
+
|
| 476 |
+
paper_central_df = MockPaperCentral()
|
| 477 |
+
|
| 478 |
+
paper_chat_tab(paper_id, paper_from, paper_central_df)
|
| 479 |
|
| 480 |
demo.launch(ssr_mode=False)
|
| 481 |
|
| 482 |
|
|
|
|
| 483 |
if __name__ == "__main__":
|
| 484 |
main()
|