Spaces:
Sleeping
Sleeping
import streamlit as st | |
from huggingface_hub import HfApi | |
import pandas | |
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES | |
hf_api = HfApi() | |
all_stats = {} | |
total_downloads = 0 | |
for model_name in list(CONFIG_MAPPING_NAMES.keys())[:2]: | |
model_stats = {"num_downloads": 0, "%_of_all_downloads": 0, "num_models": 0, "download_per_model": 0} | |
models = hf_api.list_models(filter=model_name) | |
model_stats["num_models"] = len(models) | |
model_stats["num_downloads"] = sum([m.downloads for m in models if hasattr(m, "downloads")]) | |
if len(models) > 0: | |
model_stats["download_per_model"] = round(model_stats["num_downloads"] / len(models), 2) | |
total_downloads += model_stats["num_downloads"] | |
# save in overall dict | |
all_stats[model_name] = model_stats | |
for model_name in list(CONFIG_MAPPING_NAMES.keys()): | |
all_stats[model_name]["%_of_all_downloads"] = round(all_stats[model_name]["num_downloads"] / total_downloads, 5) * 100 # noqa: E501 | |
downloads = all_stats[model_name]["num_downloads"] | |
all_stats[model_name]["num_downloads"] = f"{downloads:,}" | |
sorted_results = dict(reversed(sorted(all_stats.items(), key=lambda d: d[1]["%_of_all_downloads"]))) | |
dataframe = pandas.DataFrame.from_dict(sorted_results, orient="index") | |
result = dataframe.to_string() | |
with open("result.txt", "w") as f: | |
f.write(result) | |
st.table(dataframe) | |