init project
Browse files
app.py
CHANGED
@@ -38,8 +38,8 @@ from modules.pe3r.models import Models
|
|
38 |
import torchvision.transforms as tvf
|
39 |
|
40 |
silent = False
|
41 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
42 |
-
pe3r = Models(
|
43 |
|
44 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
45 |
cam_color=None, as_pointcloud=False,
|
@@ -244,7 +244,9 @@ def slerp_multiple(vectors, t_values):
|
|
244 |
@torch.no_grad
|
245 |
def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size, transform):
|
246 |
|
247 |
-
|
|
|
|
|
248 |
|
249 |
sam_mask=[]
|
250 |
img_area = original_size[0] * original_size[1]
|
@@ -300,7 +302,10 @@ def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size,
|
|
300 |
@torch.no_grad
|
301 |
def get_cog_feats(images):
|
302 |
|
303 |
-
|
|
|
|
|
|
|
304 |
|
305 |
cog_seg_maps = []
|
306 |
rev_cog_seg_maps = []
|
@@ -446,7 +451,8 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
446 |
then run get_3D_model_from_scene
|
447 |
"""
|
448 |
|
449 |
-
|
|
|
450 |
|
451 |
if len(filelist) < 2:
|
452 |
raise gradio.Error("Please input at least 2 images.")
|
@@ -511,7 +517,9 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
511 |
def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
512 |
mask_sky, clean_depth, transparent_cams, cam_size):
|
513 |
|
514 |
-
|
|
|
|
|
515 |
|
516 |
texts = [text]
|
517 |
inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|
|
|
38 |
import torchvision.transforms as tvf
|
39 |
|
40 |
silent = False
|
41 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
42 |
+
pe3r = Models('cpu') #
|
43 |
|
44 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
45 |
cam_color=None, as_pointcloud=False,
|
|
|
244 |
@torch.no_grad
|
245 |
def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size, transform):
|
246 |
|
247 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
248 |
+
pe3r.yolov8.to(device)
|
249 |
+
pe3r.mobilesamv2.to(device)
|
250 |
|
251 |
sam_mask=[]
|
252 |
img_area = original_size[0] * original_size[1]
|
|
|
302 |
@torch.no_grad
|
303 |
def get_cog_feats(images):
|
304 |
|
305 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
306 |
+
pe3r.sam2.to(device)
|
307 |
+
pe3r.siglip_processor.to(device)
|
308 |
+
pe3r.siglip.to(device)
|
309 |
|
310 |
cog_seg_maps = []
|
311 |
rev_cog_seg_maps = []
|
|
|
451 |
then run get_3D_model_from_scene
|
452 |
"""
|
453 |
|
454 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
455 |
+
pe3r.mast3r.to(device)
|
456 |
|
457 |
if len(filelist) < 2:
|
458 |
raise gradio.Error("Please input at least 2 images.")
|
|
|
517 |
def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
518 |
mask_sky, clean_depth, transparent_cams, cam_size):
|
519 |
|
520 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
521 |
+
pe3r.siglip_tokenizer.to(device)
|
522 |
+
|
523 |
|
524 |
texts = [text]
|
525 |
inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|