File size: 8,049 Bytes
fada17e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import tempfile
import uuid
import os
import soundfile as sf
import numpy as np
from kittentts import KittenTTS

# Initialize the TTS model
model = KittenTTS("KittenML/kitten-tts-nano-0.1")

def chunk_text(text, max_length=500):
    """
    Split long text into smaller chunks to optimize processing.
    
    Args:
        text (str): Input text to be split
        max_length (int): Maximum length of each chunk in characters
    
    Returns:
        list: List of text chunks
    """
    sentences = text.replace('\n', ' ').split('. ')
    chunks, current_chunk, current_length = [], [], 0
    
    for sentence in sentences:
        sentence = sentence.strip() + '.'
        sentence_length = len(sentence)
        
        if current_length + sentence_length > max_length:
            if current_chunk:
                chunks.append(' '.join(current_chunk))
                current_chunk, current_length = [], 0
            if sentence_length > max_length:
                # Split long sentence into smaller parts
                words = sentence.split()
                temp_chunk, temp_length = [], 0
                for word in words:
                    word_length = len(word) + 1
                    if temp_length + word_length > max_length:
                        chunks.append(' '.join(temp_chunk))
                        temp_chunk, temp_length = [], 0
                    temp_chunk.append(word)
                    temp_length += word_length
                if temp_chunk:
                    chunks.append(' '.join(temp_chunk))
                continue
        
        current_chunk.append(sentence)
        current_length += sentence_length
    
    if current_chunk:
        chunks.append(' '.join(current_chunk))
    
    return [chunk.strip() for chunk in chunks if chunk.strip()]

def generate_speech(text, voice, speed):
    """
    Generate speech from text using KittenTTS, optimized for long text.
    
    Args:
        text (str): Text to convert to speech
        voice (str): Voice to use for generation
        speed (float): Speed of speech generation
    
    Returns:
        str: Path to generated audio file or None if error
        str: Error message if applicable
    """
    if not text.strip():
        return None, "Please enter some text to generate speech."

    try:
        temp_dir = tempfile.gettempdir()
        unique_filename = f"kitten_tts_{uuid.uuid4()}.wav"
        output_path = os.path.join(temp_dir, unique_filename)
        
        # Chunk text for long inputs
        chunks = chunk_text(text, max_length=500)
        audio_segments = []
        
        for chunk in chunks:
            try:
                audio = model.generate(chunk, voice=voice, speed=speed)
                audio_segments.append(audio)
            except Exception as e:
                return None, f"Error processing chunk: {str(e)}"
        
        # Concatenate audio segments
        if len(audio_segments) > 1:
            combined_audio = np.concatenate(audio_segments)
        else:
            combined_audio = audio_segments[0] if audio_segments else None
        
        if combined_audio is None:
            return None, "No audio generated."
        
        # Save audio file
        sf.write(output_path, combined_audio, 24000)
        return output_path, None
    
    except Exception as e:
        return None, f"Error generating speech: {str(e)}"

def get_available_voices():
    """
    Retrieve list of available voices from the model.
    
    Returns:
        list: List of available voice names
    """
    try:
        voices = model.available_voices
        return voices if voices else ["expr-voice-5-m"]
    except Exception:
        return ["expr-voice-5-m"]

# Get available voices
available_voices = get_available_voices()

# Create Gradio interface
with gr.Blocks(title="KittenTTS - Text to Speech", theme=gr.themes.Soft()) as app:
    gr.Markdown("# 🐱 KittenTTS - Text to Speech Generator")
    gr.Markdown("Convert your text to high-quality speech using KittenTTS nano model! Optimized for long text inputs.")

    with gr.Row():
        with gr.Column(scale=2):
            text_input = gr.Textbox(
                label="Text to Convert",
                placeholder="Enter the text you want to convert to speech (supports long text)...",
                lines=10,
                max_lines=50
            )
            with gr.Row():
                voice_dropdown = gr.Dropdown(
                    choices=available_voices,
                    value=available_voices[0] if available_voices else "expr-voice-5-m",
                    label="Voice Selection",
                    info="Choose the voice for speech generation"
                )
                speed_slider = gr.Slider(
                    minimum=0.5,
                    maximum=2.0,
                    step=0.01,
                    value=1.25,
                    label="Speech Speed",
                    info="Adjust the speed of speech (0.5x to 2.0x)"
                )
            generate_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")
        
        with gr.Column(scale=1):
            audio_output = gr.Audio(
                label="Generated Speech",
                type="filepath",
                interactive=False,
                autoplay=True
            )
            error_output = gr.Textbox(
                label="Status",
                visible=False,
                interactive=False
            )

    # Example inputs
    gr.Markdown("## πŸ“ Example Texts")
    examples = gr.Examples(
        examples=[
            ["Hello! This is a test of the KittenTTS model with a short sentence.", 
             available_voices[2] if len(available_voices) > 2 else "expr-voice-5-m", 1.25],
            ["This is a longer text example to demonstrate how KittenTTS handles extended content. "
             "It includes multiple sentences to test the chunking mechanism and ensure smooth audio generation. "
             "The quick brown fox jumps over the lazy dog, and the story continues with more details.", 
             available_voices[1] if len(available_voices) > 1 else "expr-voice-5-m", 1.5],
            ["Welcome to the world of high-quality text-to-speech synthesis! This example showcases "
             "the ability to process varied text lengths efficiently.", 
             available_voices[5] if len(available_voices) > 5 else "expr-voice-5-m", 1],
        ],
        inputs=[text_input, voice_dropdown, speed_slider],
        outputs=[audio_output, error_output],
        fn=generate_speech,
        label="Click an example to try it out",
        cache_examples="lazy"
    )

    # Model information
    with gr.Accordion("ℹ️ Model Information", open=False):
        gr.Markdown("""
        **Model**: KittenML/kitten-tts-nano-0.1
        
        **Features**:
        - High-quality text-to-speech synthesis
        - Optimized for long text inputs through chunking
        - Works without GPU acceleration
        - Multiple voice options
        - Adjustable speech speed (0.5x to 2.0x)
        - 24kHz audio output
        
        **Usage**:
        1. Enter or paste your text in the text box (long texts supported)
        2. Select a voice from the dropdown
        3. Adjust the speech speed if needed
        4. Click "Generate Speech" to create audio
        
        Generated files are saved in a temporary directory with unique UUID filenames.
        Long texts are automatically split into manageable chunks for efficient processing.
        """)

    # Event handlers
    generate_btn.click(
        fn=generate_speech,
        inputs=[text_input, voice_dropdown, speed_slider],
        outputs=[audio_output, error_output]
    )
    
    text_input.submit(
        fn=generate_speech,
        inputs=[text_input, voice_dropdown, speed_slider],
        outputs=[audio_output, error_output]
    )

# Launch the app
if __name__ == "__main__":
    app.queue(default_concurrency_limit=50).launch()