Spaces:
Build error
Build error
replace MMDetection Vizualizer with Supervision Annotators (#4)
Browse files- replace MMDetection Visualizer with Supervision Annotators (bcf1bcb768d4c280c2519a4098dccc59ac3ce0e7)
Co-authored-by: Piotr Skalski <[email protected]>
- requirements.txt +1 -1
- tools/demo.py +25 -16
requirements.txt
CHANGED
|
@@ -9,7 +9,7 @@ addict
|
|
| 9 |
yapf
|
| 10 |
numpy
|
| 11 |
opencv-python
|
| 12 |
-
supervision==0.
|
| 13 |
ftfy
|
| 14 |
regex
|
| 15 |
pot
|
|
|
|
| 9 |
yapf
|
| 10 |
numpy
|
| 11 |
opencv-python
|
| 12 |
+
supervision==0.18.0
|
| 13 |
ftfy
|
| 14 |
regex
|
| 15 |
pot
|
tools/demo.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# Copyright (c) Tencent Inc. All rights reserved.
|
| 2 |
import os
|
|
|
|
| 3 |
import argparse
|
| 4 |
import os.path as osp
|
| 5 |
from functools import partial
|
|
@@ -11,6 +12,7 @@ import onnxsim
|
|
| 11 |
import torch
|
| 12 |
import gradio as gr
|
| 13 |
import numpy as np
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
from torchvision.ops import nms
|
| 16 |
from mmengine.config import Config, ConfigDict, DictAction
|
|
@@ -23,6 +25,8 @@ from mmyolo.registry import RUNNERS
|
|
| 23 |
|
| 24 |
from yolo_world.easydeploy.model import DeployModel, MMYOLOBackend
|
| 25 |
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def parse_args():
|
| 28 |
parser = argparse.ArgumentParser(
|
|
@@ -65,27 +69,32 @@ def run_image(runner,
|
|
| 65 |
output = runner.model.test_step(data_batch)[0]
|
| 66 |
pred_instances = output.pred_instances
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
pred_instances = pred_instances[
|
| 73 |
-
pred_instances.scores.float() > score_thr]
|
| 74 |
if len(pred_instances.scores) > max_num_boxes:
|
| 75 |
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
|
| 76 |
pred_instances = pred_instances[indices]
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
image = np.array(image)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
draw_gt=False,
|
| 86 |
-
out_file=image_path,
|
| 87 |
-
pred_score_thr=score_thr)
|
| 88 |
-
image = Image.open(image_path)
|
| 89 |
return image
|
| 90 |
|
| 91 |
|
|
|
|
| 1 |
# Copyright (c) Tencent Inc. All rights reserved.
|
| 2 |
import os
|
| 3 |
+
import cv2
|
| 4 |
import argparse
|
| 5 |
import os.path as osp
|
| 6 |
from functools import partial
|
|
|
|
| 12 |
import torch
|
| 13 |
import gradio as gr
|
| 14 |
import numpy as np
|
| 15 |
+
import supervision as sv
|
| 16 |
from PIL import Image
|
| 17 |
from torchvision.ops import nms
|
| 18 |
from mmengine.config import Config, ConfigDict, DictAction
|
|
|
|
| 25 |
|
| 26 |
from yolo_world.easydeploy.model import DeployModel, MMYOLOBackend
|
| 27 |
|
| 28 |
+
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
|
| 29 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
| 30 |
|
| 31 |
def parse_args():
|
| 32 |
parser = argparse.ArgumentParser(
|
|
|
|
| 69 |
output = runner.model.test_step(data_batch)[0]
|
| 70 |
pred_instances = output.pred_instances
|
| 71 |
|
| 72 |
+
keep = nms(pred_instances.bboxes, pred_instances.scores, iou_threshold=nms_thr)
|
| 73 |
+
pred_instances = pred_instances[keep]
|
| 74 |
+
pred_instances = pred_instances[pred_instances.scores.float() > score_thr]
|
| 75 |
+
|
|
|
|
|
|
|
| 76 |
if len(pred_instances.scores) > max_num_boxes:
|
| 77 |
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
|
| 78 |
pred_instances = pred_instances[indices]
|
| 79 |
+
|
| 80 |
+
pred_instances = pred_instances.cpu().numpy()
|
| 81 |
+
detections = sv.Detections(
|
| 82 |
+
xyxy=pred_instances['bboxes'],
|
| 83 |
+
class_id=pred_instances['labels'],
|
| 84 |
+
confidence=pred_instances['scores']
|
| 85 |
+
)
|
| 86 |
+
labels = [
|
| 87 |
+
f"{texts[class_id][0]} {confidence:0.2f}"
|
| 88 |
+
for class_id, confidence
|
| 89 |
+
in zip(detections.class_id, detections.confidence)
|
| 90 |
+
]
|
| 91 |
|
| 92 |
image = np.array(image)
|
| 93 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 94 |
+
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
|
| 95 |
+
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
|
| 96 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 97 |
+
image = Image.fromarray(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
return image
|
| 99 |
|
| 100 |
|