Spaces:
Runtime error
Runtime error
Update app.py (#1)
Browse files- Update app.py (21d17ccace5a20f2b9b3a8715f3b1163db532a4b)
app.py
CHANGED
|
@@ -2,20 +2,12 @@ import cv2
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
| 5 |
-
import
|
| 6 |
-
import warnings
|
| 7 |
-
import asyncio
|
| 8 |
-
import json
|
| 9 |
-
import websockets
|
| 10 |
-
|
| 11 |
-
warnings.filterwarnings("ignore", message="It looks like you are trying to rescale already rescaled images.")
|
| 12 |
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device)
|
| 15 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
| 16 |
|
| 17 |
-
cap = cv2.VideoCapture(0)
|
| 18 |
-
|
| 19 |
def resize_image(image, target_size=(256, 256)):
|
| 20 |
return cv2.resize(image, target_size)
|
| 21 |
|
|
@@ -28,84 +20,43 @@ def manual_normalize(depth_map):
|
|
| 28 |
else:
|
| 29 |
return np.zeros_like(depth_map, dtype=np.uint8)
|
| 30 |
|
| 31 |
-
frame_skip = 4
|
| 32 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
for websocket in connected:
|
| 38 |
-
try:
|
| 39 |
-
await websocket.send(message)
|
| 40 |
-
except websockets.exceptions.ConnectionClosed:
|
| 41 |
-
connected.remove(websocket)
|
| 42 |
-
|
| 43 |
-
async def handler(websocket, path):
|
| 44 |
-
connected.add(websocket)
|
| 45 |
-
try:
|
| 46 |
-
await websocket.wait_closed()
|
| 47 |
-
finally:
|
| 48 |
-
connected.remove(websocket)
|
| 49 |
-
|
| 50 |
-
async def process_frames():
|
| 51 |
-
frame_count = 0
|
| 52 |
-
prev_frame_time = 0
|
| 53 |
-
|
| 54 |
-
while True:
|
| 55 |
-
ret, frame = cap.read()
|
| 56 |
-
if not ret:
|
| 57 |
-
break
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
continue
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
predicted_depth = outputs.predicted_depth
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
depth_map
|
| 77 |
-
|
| 78 |
-
if depth_map.size == 0:
|
| 79 |
-
depth_map = np.zeros((256, 256), dtype=np.uint8)
|
| 80 |
else:
|
| 81 |
-
|
| 82 |
-
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 83 |
-
else:
|
| 84 |
-
depth_map = np.zeros_like(depth_map, dtype=np.uint8)
|
| 85 |
-
|
| 86 |
-
if np.all(depth_map == 0):
|
| 87 |
-
depth_map = manual_normalize(depth_map)
|
| 88 |
-
|
| 89 |
-
data = {
|
| 90 |
-
'depthMap': depth_map.tolist(),
|
| 91 |
-
'rgbFrame': rgb_frame.tolist()
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
-
await broadcast(json.dumps(data))
|
| 95 |
-
|
| 96 |
-
new_frame_time = time.time()
|
| 97 |
-
fps = 1 / (new_frame_time - prev_frame_time)
|
| 98 |
-
prev_frame_time = new_frame_time
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
|
| 103 |
-
|
| 104 |
-
cv2.
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
asyncio.run(main())
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
| 5 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device)
|
| 9 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
| 10 |
|
|
|
|
|
|
|
| 11 |
def resize_image(image, target_size=(256, 256)):
|
| 12 |
return cv2.resize(image, target_size)
|
| 13 |
|
|
|
|
| 20 |
else:
|
| 21 |
return np.zeros_like(depth_map, dtype=np.uint8)
|
| 22 |
|
|
|
|
| 23 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
| 24 |
|
| 25 |
+
def process_frame(image):
|
| 26 |
+
rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 27 |
+
resized_frame = resize_image(rgb_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
inputs = processor(images=resized_frame, return_tensors="pt").to(device)
|
| 30 |
+
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
|
|
|
|
| 31 |
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = model(**inputs)
|
| 34 |
+
predicted_depth = outputs.predicted_depth
|
| 35 |
|
| 36 |
+
depth_map = predicted_depth.squeeze().cpu().numpy()
|
|
|
|
| 37 |
|
| 38 |
+
depth_map = np.nan_to_num(depth_map, nan=0.0, posinf=0.0, neginf=0.0)
|
| 39 |
+
depth_map = depth_map.astype(np.float32)
|
|
|
|
| 40 |
|
| 41 |
+
if depth_map.size == 0:
|
| 42 |
+
depth_map = np.zeros((256, 256), dtype=np.uint8)
|
| 43 |
+
else:
|
| 44 |
+
if np.any(depth_map) and np.min(depth_map) != np.max(depth_map):
|
| 45 |
+
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
|
|
|
|
|
|
| 46 |
else:
|
| 47 |
+
depth_map = np.zeros_like(depth_map, dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
if np.all(depth_map == 0):
|
| 50 |
+
depth_map = manual_normalize(depth_map)
|
| 51 |
|
| 52 |
+
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
|
| 53 |
+
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
|
| 54 |
|
| 55 |
+
interface = gr.Interface(
|
| 56 |
+
fn=process_frame,
|
| 57 |
+
inputs=gr.Image(source="webcam", streaming=True),
|
| 58 |
+
outputs="image",
|
| 59 |
+
live=True
|
| 60 |
+
)
|
| 61 |
|
| 62 |
+
interface.launch()
|
|
|