File size: 1,774 Bytes
cb44543
0cdd743
65b4243
cb44543
0cdd743
cb44543
 
 
0cdd743
aff055d
0cdd743
 
 
 
 
 
 
90aea8c
 
 
7976834
90aea8c
7976834
c3e3be2
 
 
 
 
 
d5448bc
7976834
 
 
 
 
0cdd743
cb44543
aff055d
cb44543
 
 
 
0cdd743
 
cb44543
aff055d
 
 
 
 
 
cb44543
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from langchain.chat_models import init_chat_model
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage

model = init_chat_model("gemini-2.0-flash", model_provider="google_genai")


def respond(
    user_input: str,
    dialog_history: list[dict],
    system_message: str,
    max_new_tokens: int,
    temperature: float,
) -> str:
    """
    Respond to user input using the model.
    """
    # Set the model parameters
    model.temperature = temperature
    model.max_output_tokens = max_new_tokens

    history_langchain_format = []
    # Add the dialog history to the history
    for msg in dialog_history:
        if msg['role'] == "user":
            history_langchain_format.append(
                HumanMessage(content=msg['content']))
        elif msg['role'] == "assistant":
            history_langchain_format.append(AIMessage(content=msg['content']))

    # Combine the system message, history, and user input into a single list
    model_input = [SystemMessage(content=system_message)] + \
        history_langchain_format + [HumanMessage(content=user_input)]
    
    response = model.invoke(model_input)
    return response.content


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    fn=respond,
    type="messages",
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.",
                   label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512,
                  step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7,
                  step=0.1, label="Temperature"),
    ],
)


if __name__ == "__main__":
    demo.launch()