File size: 7,576 Bytes
b5d3943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""Utilities for assembling and exporting interview reports.

This module provides two primary helpers used by the recruiter dashboard:

``generate_llm_interview_report(application)``
    Given a candidate's ``Application`` record, assemble a plain‑text report
    summarising the interview.  Because the interview process currently
    executes entirely client‑side and does not persist questions or answers
    to the database, this report focuses on the information available on
    the server: the candidate's profile, the job requirements and a skills
    match score.  Should future iterations store richer interview data
    server‑side, this function can be extended to include question/answer
    transcripts, per‑question scores and LLM‑generated feedback.

``create_pdf_report(report_text)``
    Convert a multi‑line string into a simple PDF.  The implementation
    leverages Matplotlib's PDF backend (available by default) to avoid
    heavyweight dependencies such as ReportLab or WeasyPrint, which are
    absent from the runtime environment.  Text is wrapped and split
    across multiple pages as necessary.
"""

from __future__ import annotations

import json
from io import BytesIO
import textwrap
from typing import List

import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages

def generate_llm_interview_report(application) -> str:
    """Generate a human‑readable interview report for a candidate.

    The report includes the candidate's name and email, job details,
    application date, a computed skills match summary and placeholder
    sections for future enhancements.  If server‑side storage of
    question/answer pairs is added later, this function can be updated
    to incorporate those details.

    Parameters
    ----------
    application : backend.models.database.Application
        The SQLAlchemy Application instance representing the candidate's
        job application.  Assumed to have related ``job`` and
        ``date_applied`` attributes available.

    Returns
    -------
    str
        A multi‑line string containing the report contents.
    """
    # Defensive imports to avoid circular dependencies at import time
    try:
        from datetime import datetime  # noqa: F401
    except Exception:
        pass

    # Extract candidate skills and job skills
    try:
        candidate_features = json.loads(application.extracted_features) if application.extracted_features else {}
    except Exception:
        candidate_features = {}
    candidate_skills: List[str] = candidate_features.get('skills', []) or []

    job_skills: List[str] = []
    try:
        job_skills = json.loads(application.job.skills) if application.job and application.job.skills else []
    except Exception:
        job_skills = []

    # Compute skills match ratio and label.  Normalise to lower case for
    # comparison and avoid dividing by zero when ``job_skills`` is empty.
    candidate_set = {s.strip().lower() for s in candidate_skills}
    job_set = {s.strip().lower() for s in job_skills}
    common = candidate_set & job_set
    ratio = len(common) / len(job_set) if job_set else 0.0

    if ratio >= 0.75:
        score_label = 'Excellent'
    elif ratio >= 0.5:
        score_label = 'Good'
    elif ratio >= 0.25:
        score_label = 'Medium'
    else:
        score_label = 'Poor'

    # Assemble report lines
    lines: List[str] = []
    lines.append('Interview Report')
    lines.append('=================')
    lines.append('')
    lines.append(f'Candidate Name: {application.name}')
    lines.append(f'Candidate Email: {application.email}')
    if application.job:
        lines.append(f'Job Applied: {application.job.role}')
        lines.append(f'Company: {application.job.company}')
    else:
        lines.append('Job Applied: N/A')
        lines.append('Company: N/A')
    # Format date_applied if available
    try:
        date_str = application.date_applied.strftime('%Y-%m-%d') if application.date_applied else 'N/A'
    except Exception:
        date_str = 'N/A'
    lines.append(f'Date Applied: {date_str}')
    lines.append('')
    lines.append('Skills Match Summary:')
    # Represent required and candidate skills as comma‑separated lists.  Use
    # title‑case for presentation and handle empty lists gracefully.
    formatted_job_skills = ', '.join(job_skills) if job_skills else 'N/A'
    formatted_candidate_skills = ', '.join(candidate_skills) if candidate_skills else 'N/A'
    formatted_common = ', '.join(sorted(common)) if common else 'None'
    lines.append(f'  Required Skills: {formatted_job_skills}')
    lines.append(f'  Candidate Skills: {formatted_candidate_skills}')
    lines.append(f'  Skills in Common: {formatted_common}')
    lines.append(f'  Match Ratio: {ratio * 100:.0f}%')
    lines.append(f'  Score: {score_label}')
    lines.append('')
    lines.append('Additional Notes:')
    lines.append('This report was generated automatically based on the information provided in the application.')
    lines.append('Interview question and answer details are not currently stored on the server.')
    lines.append('Future versions may include a detailed breakdown of interview responses and evaluator feedback.')

    return '\n'.join(lines)


def create_pdf_report(report_text: str) -> BytesIO:
    """Convert a plain‑text report into a PDF document.

    This helper uses Matplotlib's ``PdfPages`` backend to compose a PDF
    containing the supplied text.  Lines are wrapped to a reasonable
    width and paginated as needed.  The returned ``BytesIO`` object can
    be passed directly to Flask's ``send_file`` function.

    Parameters
    ----------
    report_text : str
        The full contents of the report to be included in the PDF.

    Returns
    -------
    BytesIO
        A file‑like buffer containing the PDF data.  The caller is
        responsible for rewinding the buffer (via ``seek(0)``) before
        sending it over HTTP.
    """
    buffer = BytesIO()

    # Split the input into lines and wrap long lines for better layout
    raw_lines = report_text.split('\n')
    wrapper = textwrap.TextWrapper(width=90, break_long_words=True, replace_whitespace=False)
    wrapped_lines: List[str] = []
    for line in raw_lines:
        if not line:
            wrapped_lines.append('')
            continue
        # Wrap each line individually; the wrapper returns a list
        segments = wrapper.wrap(line)
        if segments:
            wrapped_lines.extend(segments)
        else:
            wrapped_lines.append(line)

    # Determine how many lines to place on each PDF page.  The value
    # of 40 lines per page fits comfortably on an A4 sheet using the
    # selected font size and margins.
    lines_per_page = 40

    with PdfPages(buffer) as pdf:
        for i in range(0, len(wrapped_lines), lines_per_page):
            fig = plt.figure(figsize=(8.27, 11.69))  # A4 portrait in inches
            fig.patch.set_facecolor('white')
            # Compose the block of text for this page
            page_text = '\n'.join(wrapped_lines[i:i + lines_per_page])
            # Place the text near the top-left corner.  ``va='top'``
            # ensures the first line starts at the specified y
            fig.text(0.1, 0.95, page_text, va='top', ha='left', fontsize=10, family='monospace')
            # Save and close the figure to free memory
            pdf.savefig(fig)
            plt.close(fig)

    buffer.seek(0)
    return buffer


__all__ = ['generate_llm_interview_report', 'create_pdf_report']