Spaces:
Paused
Paused
File size: 24,485 Bytes
b5d3943 06654d0 b5d3943 06654d0 b822cf0 aba3be2 b5d3943 aba3be2 b5d3943 aba3be2 b5d3943 aba3be2 b5d3943 aba3be2 b5d3943 aba3be2 b5d3943 aba3be2 b5d3943 b822cf0 b5d3943 aba3be2 6720344 6088c8f 6720344 aba3be2 6720344 194e7a7 6720344 aba3be2 6720344 b5d3943 06654d0 b5d3943 06654d0 a746471 06654d0 a746471 06654d0 b822cf0 a746471 06654d0 b822cf0 06654d0 b822cf0 06654d0 b822cf0 06654d0 aba3be2 b822cf0 aba3be2 b822cf0 06654d0 b822cf0 06654d0 b822cf0 06654d0 b822cf0 06654d0 b822cf0 aba3be2 06654d0 aba3be2 b822cf0 06654d0 b822cf0 aba3be2 b822cf0 aba3be2 b822cf0 06654d0 b822cf0 06654d0 b822cf0 06654d0 b822cf0 06654d0 aba3be2 06654d0 b822cf0 06654d0 b822cf0 06654d0 b822cf0 06654d0 b822cf0 cb47676 b822cf0 cb47676 b822cf0 cb47676 06654d0 b822cf0 06654d0 b822cf0 aba3be2 b822cf0 aba3be2 b822cf0 aba3be2 e0470f3 b822cf0 e0470f3 b822cf0 e0470f3 8330d5a b822cf0 e0470f3 cb47676 e0470f3 b822cf0 e0470f3 06654d0 b822cf0 e0470f3 8330d5a e0470f3 8330d5a e0470f3 8330d5a a746471 06654d0 c11e18e 06654d0 a746471 c11e18e 06654d0 e0470f3 06654d0 aba3be2 06654d0 aba3be2 06654d0 aba3be2 06654d0 aba3be2 06654d0 a746471 06654d0 a746471 06654d0 aba3be2 06654d0 aba3be2 06654d0 aba3be2 06654d0 aba3be2 06654d0 aba3be2 b822cf0 06654d0 194e7a7 06654d0 b822cf0 194e7a7 b822cf0 194e7a7 b822cf0 06654d0 b822cf0 194e7a7 b822cf0 194e7a7 b822cf0 194e7a7 b822cf0 06654d0 b822cf0 194e7a7 b822cf0 194e7a7 b822cf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
from __future__ import annotations
import json
from io import BytesIO
import textwrap
from typing import List, Dict, Any, Tuple
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.patches as mpatches
from matplotlib.patches import Rectangle, FancyBboxPatch
from datetime import datetime
def generate_llm_interview_report(application) -> str:
"""Generate a human‑readable interview report for a candidate.
The report includes the candidate's name and email, job details,
application date, a computed skills match summary and placeholder
sections for future enhancements. If server‑side storage of
question/answer pairs is added later, this function can be updated
to incorporate those details.
Parameters
----------
application : backend.models.database.Application
The SQLAlchemy Application instance representing the candidate's
job application. Assumed to have related ``job`` and
``date_applied`` attributes available.
Returns
-------
str
A multi‑line string containing the report contents.
"""
# Defensive imports to avoid circular dependencies at import time
try:
from datetime import datetime # noqa: F401
except Exception:
pass
# Extract candidate skills and job skills
try:
candidate_features = json.loads(application.extracted_features) if application.extracted_features else {}
except Exception:
candidate_features = {}
candidate_skills: List[str] = candidate_features.get('skills', []) or []
job_skills: List[str] = []
try:
job_skills = json.loads(application.job.skills) if application.job and application.job.skills else []
except Exception:
job_skills = []
# Compute skills match ratio and label. Normalise to lower case for
# comparison and avoid dividing by zero when ``job_skills`` is empty.
candidate_set = {s.strip().lower() for s in candidate_skills}
job_set = {s.strip().lower() for s in job_skills}
common = candidate_set & job_set
ratio = len(common) / len(job_set) if job_set else 0.0
if ratio >= 0.75:
score_label = 'Excellent'
elif ratio >= 0.5:
score_label = 'Good'
elif ratio >= 0.25:
score_label = 'Medium'
else:
score_label = 'Poor'
# Assemble report lines
lines: List[str] = []
lines.append('Interview Report')
lines.append('=================')
lines.append('')
lines.append(f'Candidate Name: {application.name}')
lines.append(f'Candidate Email: {application.email}')
if application.job:
lines.append(f'Job Applied: {application.job.role}')
lines.append(f'Company: {application.job.company}')
else:
lines.append('Job Applied: N/A')
lines.append('Company: N/A')
# Format date_applied if available
try:
date_str = application.date_applied.strftime('%Y-%m-%d') if application.date_applied else 'N/A'
except Exception:
date_str = 'N/A'
lines.append(f'Date Applied: {date_str}')
lines.append('')
lines.append('Skills Match Summary:')
# Represent required and candidate skills as comma‑separated lists. Use
# title‑case for presentation and handle empty lists gracefully.
formatted_job_skills = ', '.join(job_skills) if job_skills else 'N/A'
formatted_candidate_skills = ', '.join(candidate_skills) if candidate_skills else 'N/A'
formatted_common = ', '.join(sorted(common)) if common else 'None'
lines.append(f' Required Skills: {formatted_job_skills}')
lines.append(f' Candidate Skills: {formatted_candidate_skills}')
lines.append(f' Skills in Common: {formatted_common}')
lines.append(f' Match Ratio: {ratio * 100:.0f}%')
lines.append(f' Score: {score_label}')
lines.append('')
lines.append('Interview Transcript & Evaluation:')
try:
if application.interview_log:
try:
qa_log = json.loads(application.interview_log)
except Exception:
qa_log = []
if qa_log:
for idx, entry in enumerate(qa_log, 1):
q = entry.get("question", "N/A")
a = entry.get("answer", "N/A")
# Handle salary question specifically
if "salary" in q.lower() and (a == "0$" or a == "0" or a == "$0"):
a = "Prefer not to disclose"
eval_score = entry.get("evaluation", {}).get("score", "N/A")
eval_feedback = entry.get("evaluation", {}).get("feedback", "N/A")
lines.append(f"\nQuestion {idx}: {q}")
lines.append(f"Answer: {a}")
lines.append(f"Score: {eval_score}")
lines.append(f"Feedback: {eval_feedback}")
else:
lines.append("No interview log data recorded.")
else:
lines.append("No interview log data recorded.")
except Exception as e:
lines.append(f"Error loading interview log: {e}")
return '\n'.join(lines)
def create_pdf_report(report_text: str) -> BytesIO:
"""Convert a formatted report into a clean, professional A4 PDF."""
buffer = BytesIO()
# A4 dimensions in inches (210mm x 297mm)
A4_WIDTH = 8.27
A4_HEIGHT = 11.69
# Margins in inches
LEFT_MARGIN = 0.75
RIGHT_MARGIN = 0.75
TOP_MARGIN = 0.75
BOTTOM_MARGIN = 0.75
# Calculate content area
CONTENT_WIDTH = A4_WIDTH - LEFT_MARGIN - RIGHT_MARGIN
CONTENT_HEIGHT = A4_HEIGHT - TOP_MARGIN - BOTTOM_MARGIN
# Professional color scheme - single accent color
ACCENT_COLOR = '#1e40af' # Dark blue
TEXT_COLOR = '#111827' # Dark gray/black
LIGHT_GRAY = '#f8fafc' # Light background
BORDER_COLOR = '#e2e8f0' # Light border
# Parse report data
report_data = _parse_report_text(report_text)
# Create PDF
with PdfPages(buffer) as pdf:
# Page 1: Header, Candidate Info, and Skills Summary
fig = plt.figure(figsize=(A4_WIDTH, A4_HEIGHT))
fig.patch.set_facecolor('white')
# Create main axis
ax = fig.add_subplot(111)
ax.set_xlim(0, A4_WIDTH)
ax.set_ylim(0, A4_HEIGHT)
ax.axis('off')
# Current Y position (start from top)
y_pos = A4_HEIGHT - TOP_MARGIN
# === HEADER SECTION ===
# Clean header with company info
ax.text(LEFT_MARGIN, y_pos, 'INTERVIEW ASSESSMENT REPORT',
fontsize=20, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif')
# Date
current_date = datetime.now().strftime('%B %d, %Y')
ax.text(A4_WIDTH - RIGHT_MARGIN, y_pos, current_date,
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif',
horizontalalignment='right')
y_pos -= 0.8
# === CANDIDATE INFO AND OVERALL SCORE ===
# Large overall score box (prominent)
overall_score = _calculate_overall_score(report_data)
score_color = _get_score_color(overall_score['label'])
# Score box on the right
score_box_width = 2.5
score_box_height = 1.8
score_x = A4_WIDTH - RIGHT_MARGIN - score_box_width
# Score background
score_rect = FancyBboxPatch(
(score_x, y_pos - score_box_height), score_box_width, score_box_height,
boxstyle="round,pad=0.1",
facecolor=LIGHT_GRAY,
edgecolor=ACCENT_COLOR,
linewidth=2
)
ax.add_patch(score_rect)
# Large score percentage
ax.text(score_x + score_box_width/2, y_pos - 0.6, f"{overall_score['percentage']:.0f}%",
fontsize=32, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif',
horizontalalignment='center', verticalalignment='center')
# Score label
ax.text(score_x + score_box_width/2, y_pos - 1.2, 'OVERALL SCORE',
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif',
horizontalalignment='center', fontweight='bold')
ax.text(score_x + score_box_width/2, y_pos - 1.5, overall_score['label'].upper(),
fontsize=14, fontweight='bold', color=score_color, fontfamily='sans-serif',
horizontalalignment='center')
# Candidate information on the left
info_width = CONTENT_WIDTH - score_box_width - 0.5
# Candidate name (large)
ax.text(LEFT_MARGIN, y_pos - 0.3, report_data['candidate_name'],
fontsize=18, fontweight='bold', color=TEXT_COLOR, fontfamily='sans-serif')
# Position and company
ax.text(LEFT_MARGIN, y_pos - 0.7, f"{report_data['job_role']} • {report_data['company']}",
fontsize=12, color=TEXT_COLOR, fontfamily='sans-serif')
# Email and date
ax.text(LEFT_MARGIN, y_pos - 1.0, f"Email: {report_data['candidate_email']}",
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif')
ax.text(LEFT_MARGIN, y_pos - 1.3, f"Application Date: {report_data['date_applied']}",
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif')
y_pos -= 2.5
# === SKILLS MATCH SUMMARY ===
# Section header
ax.text(LEFT_MARGIN, y_pos, 'SKILLS MATCH SUMMARY',
fontsize=14, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif')
# Underline
ax.plot([LEFT_MARGIN, LEFT_MARGIN + 3], [y_pos - 0.1, y_pos - 0.1],
color=ACCENT_COLOR, linewidth=2)
y_pos -= 0.5
skills_data = report_data['skills_match']
# Skills match percentage bar
bar_width = CONTENT_WIDTH - 1
bar_height = 0.3
# Background bar
bg_rect = Rectangle((LEFT_MARGIN + 0.5, y_pos - bar_height), bar_width, bar_height,
facecolor=LIGHT_GRAY, edgecolor=BORDER_COLOR)
ax.add_patch(bg_rect)
# Progress bar
progress_width = bar_width * (skills_data['ratio'] / 100)
progress_rect = Rectangle((LEFT_MARGIN + 0.5, y_pos - bar_height), progress_width, bar_height,
facecolor=ACCENT_COLOR, edgecolor='none')
ax.add_patch(progress_rect)
# Percentage text
ax.text(LEFT_MARGIN + 0.5 + bar_width/2, y_pos - bar_height/2,
f"{skills_data['ratio']:.0f}% Skills Match",
fontsize=11, fontweight='bold', color='white', fontfamily='sans-serif',
horizontalalignment='center', verticalalignment='center')
y_pos -= 0.8
# Skills details (simplified)
required_text = f"Required Skills: {skills_data['required']}"
for line in textwrap.wrap(required_text, width=85):
ax.text(LEFT_MARGIN, y_pos, line,
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif')
y_pos -= 0.3
y_pos -= 0.3
candidate_text = f"Candidate Skills: {skills_data['candidate']}"
for line in textwrap.wrap(candidate_text, width=85):
ax.text(LEFT_MARGIN, y_pos, line,
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif')
y_pos -= 0.3
y_pos -= 0.3
matching_text = f"Matching Skills: {skills_data['common']}"
for line in textwrap.wrap(matching_text, width=85):
ax.text(LEFT_MARGIN, y_pos, line,
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif')
y_pos -= 0.3
y_pos -= 0.8
# === INTERVIEW TRANSCRIPT PREVIEW ===
if report_data['qa_log']:
ax.text(LEFT_MARGIN, y_pos, 'INTERVIEW TRANSCRIPT',
fontsize=14, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif')
# Underline
ax.plot([LEFT_MARGIN, LEFT_MARGIN + 3], [y_pos - 0.1, y_pos - 0.1],
color=ACCENT_COLOR, linewidth=2)
y_pos -= 0.5
# Show up to 3 Q&As on the first page. The number actually
# displayed depends on available space. We track how many
# questions we render so the remainder can be displayed on
# subsequent pages without skipping any entries.
max_qa_on_page1 = min(3, len(report_data['qa_log']))
qa_count_on_page1 = 0
for i in range(max_qa_on_page1):
qa = report_data['qa_log'][i]
# Check if we have space for the next Q&A. If not, break
# early. The 2.2 constant accounts for the approximate
# vertical space needed for a question, answer, evaluation
# and some spacing. If insufficient space remains, we
# stop adding to this page.
if y_pos < BOTTOM_MARGIN + 2.2:
break
# Question number starts at 1 on the first page
question_text = f"Q{qa_count_on_page1 + 1}: {qa['question']}"
for line in textwrap.wrap(question_text, width=85):
ax.text(LEFT_MARGIN, y_pos, line,
fontsize=11, fontweight='bold', color=ACCENT_COLOR, fontfamily='sans-serif')
y_pos -= 0.25
y_pos -= 0.15 # extra spacing after question block
# Answer. Mask salary disclosure if applicable.
answer_text = qa['answer']
if "salary" in qa['question'].lower() and (answer_text == "0$" or answer_text == "0" or answer_text == "$0"):
answer_text = "Prefer not to disclose"
wrapped_answer = textwrap.fill(answer_text, width=85)
answer_lines = wrapped_answer.split('\n')[:2] # Max 2 lines
for line in answer_lines:
ax.text(LEFT_MARGIN + 0.3, y_pos, line,
fontsize=10, color=TEXT_COLOR, fontfamily='sans-serif')
y_pos -= 0.25
# Evaluation
eval_color = _get_score_color(qa['score'])
ax.text(LEFT_MARGIN + 0.3, y_pos, f"Evaluation: {qa['score']}",
fontsize=10, fontweight='bold', color=eval_color, fontfamily='sans-serif')
y_pos -= 0.6
qa_count_on_page1 += 1
# Save first page
pdf.savefig(fig, bbox_inches='tight', pad_inches=0)
plt.close(fig)
# === PAGE 2: REMAINING TRANSCRIPT ===
# Render the remainder of the Q&A log on additional pages. Use
# qa_count_on_page1 (actual number shown on the first page) rather
# than the theoretical max_qa_on_page1 so that no entries are
# inadvertently skipped when the first page runs out of space.
if report_data['qa_log'] and len(report_data['qa_log']) > qa_count_on_page1:
_create_transcript_page(
pdf,
report_data['qa_log'][qa_count_on_page1:], # Continue from the next unanswered question
A4_WIDTH, A4_HEIGHT,
LEFT_MARGIN, RIGHT_MARGIN, TOP_MARGIN, BOTTOM_MARGIN,
ACCENT_COLOR, TEXT_COLOR,
start_index=qa_count_on_page1 + 1 # Correct numbering
)
buffer.seek(0)
return buffer
def _parse_report_text(report_text: str) -> Dict[str, Any]:
"""Parse the text report into structured data."""
lines = report_text.split('\n')
data = {
'candidate_name': 'N/A',
'candidate_email': 'N/A',
'job_role': 'N/A',
'company': 'N/A',
'date_applied': 'N/A',
'skills_match': {
'required': 'N/A',
'candidate': 'N/A',
'common': 'N/A',
'ratio': 0,
'score': 'N/A'
},
'qa_log': []
}
current_question = None
for line in lines:
line = line.strip()
if line.startswith('Candidate Name:'):
data['candidate_name'] = line.split(':', 1)[1].strip()
elif line.startswith('Candidate Email:'):
data['candidate_email'] = line.split(':', 1)[1].strip()
elif line.startswith('Job Applied:'):
data['job_role'] = line.split(':', 1)[1].strip()
elif line.startswith('Company:'):
data['company'] = line.split(':', 1)[1].strip()
elif line.startswith('Date Applied:'):
data['date_applied'] = line.split(':', 1)[1].strip()
elif line.startswith('Required Skills:'):
data['skills_match']['required'] = line.split(':', 1)[1].strip()
elif line.startswith('Candidate Skills:'):
data['skills_match']['candidate'] = line.split(':', 1)[1].strip()
elif line.startswith('Skills in Common:'):
data['skills_match']['common'] = line.split(':', 1)[1].strip()
elif line.startswith('Match Ratio:'):
try:
data['skills_match']['ratio'] = float(line.split(':')[1].strip().rstrip('%'))
except:
data['skills_match']['ratio'] = 0
elif line.startswith('Score:'):
# Distinguish between the overall skills match score and per‑question scores.
# If no question has been started yet (i.e. current_question is None),
# interpret this Score line as the skills match score. Otherwise it
# belongs to the most recent question.
score_value = line.split(':', 1)[1].strip()
if current_question is None:
data['skills_match']['score'] = score_value
else:
current_question['score'] = score_value
continue
elif line.startswith('Question'):
if current_question:
data['qa_log'].append(current_question)
current_question = {
'question': line.split(':', 1)[1].strip() if ':' in line else line,
'answer': '',
'score': '',
'feedback': ''
}
elif line.startswith('Answer:') and current_question:
current_question['answer'] = line.split(':', 1)[1].strip()
elif line.startswith('Feedback:') and current_question:
current_question['feedback'] = line.split(':', 1)[1].strip()
if current_question:
data['qa_log'].append(current_question)
return data
def _calculate_overall_score(report_data: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate overall score from skills match and QA scores."""
# Skills match contributes 40%
skills_ratio = report_data['skills_match']['ratio'] / 100
# QA scores contribute 60%
qa_scores = []
for qa in report_data['qa_log']:
score_text = qa['score'].lower()
if 'excellent' in score_text or '5' in score_text or '10' in score_text:
qa_scores.append(1.0)
elif 'good' in score_text or '4' in score_text or '8' in score_text or '9' in score_text:
qa_scores.append(0.8)
elif 'satisfactory' in score_text or 'medium' in score_text or '3' in score_text or '6' in score_text or '7' in score_text:
qa_scores.append(0.6)
elif 'needs improvement' in score_text or 'poor' in score_text or '2' in score_text or '4' in score_text or '5' in score_text:
qa_scores.append(0.4)
else:
qa_scores.append(0.2)
qa_average = sum(qa_scores) / len(qa_scores) if qa_scores else 0.5
# Calculate weighted average
overall = (skills_ratio * 0.4) + (qa_average * 0.6)
percentage = overall * 100
if overall >= 0.8:
label = 'Excellent'
elif overall >= 0.65:
label = 'Good'
elif overall >= 0.45:
label = 'Satisfactory'
else:
label = 'Needs Improvement'
return {'percentage': percentage, 'label': label}
def _get_score_color(score_label: str) -> str:
"""Get color based on score label."""
score_label = score_label.lower()
if 'excellent' in score_label:
return '#059669' # Green
elif 'good' in score_label:
return '#2563eb' # Blue
elif 'medium' in score_label or 'satisfactory' in score_label:
return '#d97706' # Orange
else:
return '#dc2626' # Red
def _create_transcript_page(pdf, qa_log: List[Dict], page_width: float, page_height: float,
left_margin: float, right_margin: float, top_margin: float, bottom_margin: float,
accent_color: str, text_color: str, start_index: int = 1):
"""Create a clean page for remaining interview transcript."""
content_width = page_width - left_margin - right_margin
fig = plt.figure(figsize=(page_width, page_height))
fig.patch.set_facecolor('white')
ax = fig.add_subplot(111)
ax.set_xlim(0, page_width)
ax.set_ylim(0, page_height)
ax.axis('off')
# Start from top
y_pos = page_height - top_margin
# Page header
ax.text(left_margin, y_pos, 'INTERVIEW TRANSCRIPT (CONTINUED)',
fontsize=14, fontweight='bold', color=accent_color, fontfamily='sans-serif')
# Underline
ax.plot([left_margin, left_margin + 4], [y_pos - 0.1, y_pos - 0.1],
color=accent_color, linewidth=2)
y_pos -= 0.8
# Process remaining Q&As
for i, qa in enumerate(qa_log):
# Check if we have space for this Q&A
if y_pos < bottom_margin + 1.5:
break
# Question
question_text = f"Q{start_index + i}: {qa['question']}"
wrapped_question = textwrap.fill(question_text, width=85)
question_lines = wrapped_question.split('\n')
for line in question_lines:
ax.text(left_margin, y_pos, line,
fontsize=11, fontweight='bold', color=accent_color, fontfamily='sans-serif')
y_pos -= 0.3
y_pos -= 0.1
# Answer
answer_text = qa['answer']
if "salary" in qa['question'].lower() and (answer_text == "0$" or answer_text == "0" or answer_text == "$0"):
answer_text = "Prefer not to disclose"
wrapped_answer = textwrap.fill(answer_text, width=80)
answer_lines = wrapped_answer.split('\n')
for line in answer_lines[:3]: # Max 3 lines per answer
ax.text(left_margin + 0.3, y_pos, line,
fontsize=10, color=text_color, fontfamily='sans-serif')
y_pos -= 0.25
# Evaluation
eval_color = _get_score_color(qa['score'])
ax.text(left_margin + 0.3, y_pos, f"Evaluation: {qa['score']}",
fontsize=10, fontweight='bold', color=eval_color, fontfamily='sans-serif')
y_pos -= 0.2
# Feedback (if available and space permits)
if qa['feedback'] and qa['feedback'] != 'N/A' and y_pos > bottom_margin + 0.8:
feedback_text = f"Feedback: {qa['feedback']}"
wrapped_feedback = textwrap.fill(feedback_text, width=75)
feedback_lines = wrapped_feedback.split('\n')[:2] # Max 2 lines
for line in feedback_lines:
ax.text(left_margin + 0.3, y_pos, line,
fontsize=9, color='#6b7280', fontfamily='sans-serif', style='italic')
y_pos -= 0.2
y_pos -= 0.4
# Add separator line between questions
if i < len(qa_log) - 1 and y_pos > bottom_margin + 1:
ax.plot([left_margin + 0.5, left_margin + content_width - 0.5],
[y_pos + 0.1, y_pos + 0.1],
color='#e5e7eb', linewidth=0.5, linestyle='--')
y_pos -= 0.3
# Save page
pdf.savefig(fig, bbox_inches='tight', pad_inches=0)
plt.close(fig)
__all__ = ['generate_llm_interview_report', 'create_pdf_report']
|